We have previously demonstrated that the myosin essential light chain (ELC) is required for myosin function in a Dictyostelium cell line, 7–11, in which the expression of ELC was inhibited by antisense RNA overexpression. We have now disrupted the gene encoding the ELC (mlcE) in Dictyostelium by gene targeting. The mlcE- mutants provide a clean genetic background for phenotypic analysis and biochemical characterization by removing complications arising from the residual ELC present in 7–11 cells, as well as the possibility of mutations due to insertion of the antisense construct at multiple sites in the genome. The mlcE- mutants, when grown in suspension, exhibited the typical multinucleate phenotype observed in both myosin heavy chain mutants and 7–11 cells. This phenotype was rescued by introducing a construct that expressed the wild-type Dictyostelium ELC cDNA. Myosin purified from the mlcE- cells exhibited significant calcium ATPase activity, but the actin-activated ATPase activity was greatly reduced. The results obtained from the mlcE- mutants strengthen our previous conclusion based on the antisense cell line 7–11 that ELC is critical for myosin function. The proper localization of myosin in mlcE- cells suggests that its phenotypic defects primarily arise from defective contractile function of myosin rather than its mislocalization. The enzymatic defect of myosin in mlcE- cells also suggests a possible mechanism for the observed chemotactic defect of mlcE- cells. We have shown that while mlcE- cells were able to respond to chemoattractant with proper directionality, their rate of movement was reduced. During chemotaxis, proper directionality toward chemoattractant may depend primarily on proper localization of myosin, while efficient motility requires contractile function. In addition, we have analyzed the morphogenetic events during the development of mlcE- cells using lacZ reporter constructs expressed from cell type specific promoters. By analyzing the morphogenetic patterns of the two major cell types arising during Dictyostelium development, prespore and prestalk cells, we have shown that the localization of prespore cells is more susceptible to the loss of ELC than prestalk cells, although localization of both cell types is abnormal when developed in chimeras formed by mixing equal numbers of wild-type and mutant cells. These results suggest that the morphogenetic events during Dictyostelium development have different requirements for myosin.

Berlot
C. H.
,
Spudich
J. A.
,
Devreotes
P. N.
(
1985
).
Chemoattractant-elicited increases in myosin phosphorylation in Dictyostelium.
Cell
43
,
307
314
Chalovich
J. M.
,
Stein
L. A.
,
Greene
L. E.
,
Eisenberg
E.
(
1984
).
Interaction of isozymes of myosin subfragment 1 with actin: Effect of ionic strength and nucleotide.
Biochemistry
23
,
4885
4889
Chen
P.
,
Ostrow
B. D.
,
Tafuri
S. R.
,
Chisholm
R. L.
(
1994
).
Targeted disruption of the Dictyostelium RMLC gene produces cells defective in cytokinesis and development.
J. Cell Biol
127
,
1933
1944
Clarke
M.
,
Spudich
J. A.
(
1974
).
Biochemical and structural studies of actomyosin-like proteins from nonmuscle cells: Isolation and characterization of myosin from amoebae of Dictyostelium discoideum.
J. Mol. Biol
86
,
209
222
DeBiasio
R.
,
LaRocca
G.
,
Cotter
K.
,
Taylor
D. L.
(
1994
).
Mechanisms responsible for a transient concentration of myosin II during cytokinesis.
Mol. Biol. Cell
5
,
402
–.
DeLozanne
A.
,
Spudich
J. A.
(
1987
).
Disruption of the Dictyostelium myosin heavy chain gene by homologous recombination.
Science
236
,
1086
1091
Dingermann
T.
,
Reindl
N.
,
Werner
H.
,
Hildebrandt
M.
,
Nellen
W.
,
Harwood
A.
,
Williams
J.
,
Nerke
K.
(
1989
).
Optimization and in situ detection of Escherichia coli-galactosidase gene expression in Dictyostelium discoideum.
Gene
85
,
353
562
Dreizen
P.
,
Gershman
L. C.
(
1970
).
Relationship of structure to function in myosin. II. Salt denaturation and recombination experiments.
Biochemistry
9
,
1688
1693
Durston
A. J.
,
Cohen
M. H.
,
Drage
D. J.
,
Potel
M. J.
,
Robertson
A.
,
Wonio
D.
(
1976
).
Periodic movements of Dictyostelium discoideum sorocarps.
Dev. Biol
52
,
173
180
Dynes
J. L.
,
Firtel
R. A.
(
1989
).
Molecular complementation of a genetic marker in Dictyostelium using a genomic DNA library.
Proc. Nat. Acad. Sci. USA
86
,
7966
7970
Early
A. E.
,
Gaskell
M. J.
,
Traynor
D.
,
Williams
J. G.
(
1993
).
Two distinct populations of prestalk cells within the tip of the migratory Dictyostelium slug with differing fates at culmination.
Development
118
,
353
362
Eliott
S.
,
Vardy
P. H.
,
Williams
K. L.
(
1991
).
The distribution of myosin II in Dictyostelium discoideum slug cells.
J. Cell Biol
115
,
1267
1274
Eliott
S.
,
Joss
G. H.
,
Spudich
A.
,
Williams
K. L.
(
1993
).
Patterns in Dictyostelium discoideum: the role of myosin II in the transition from the unicellular to the multicellular phase.
J. Cell Sci
104
,
457
466
Fukui
Y.
,
DeLozanne
A.
,
Spudich
J. A.
(
1990
).
Structure and function of the cytoskeleton of a Dictyostelium myosin-defective mutant.
J. Cell Biol
110
,
367
378
Gershman
L. C.
,
Dreizen
P.
(
1970
).
Relationship of structure to function in myosin. I. Subunit dissociation in concentrated salt solutions.
Biochemistry
9
,
1677
1687
Hadwiger
J. A.
,
Firtel
R. A.
(
1992
).
Analysis of G4, a G protein subunit required for multicellular development in Dictyostelium.
Genes Dev
6
,
38
49
Harwood
A. J.
,
Early
A. E.
,
Jermyn
K. A.
,
Williams
J.
(
1991
).
Unexpected localization of cells expressing a prespore marker of Dictyostelium discoideum.
Differentiation
46
,
7
13
Hasegawa
Y.
,
Morita
F.
(
1992
).
Role of 17-kDa essential light chain isoforms of aorta smooth muscle myosin.
J. Biochem
111
,
804
809
Howard
P. K.
,
Ahern
K. G.
,
Firtel
R. A.
(
1988
).
Establishment of atransient expression system for Dictyostelium discoideum.
Nucl. Acid Res
16
,
2613
2623
Jermyn
K. A.
,
Williams
J. G.
(
1991
).
An analysis of culmination in Dictyostelium using prestalk and stalk-specific cell autonomous markers.
Development
111
,
779
787
Karess
R. E.
,
Chang
X.-j.
,
Edward
K. A.
,
Kulkarni
S.
,
Aguilera
I.
,
Kiehart
D. P.
(
1991
).
The regulatory light chain of nonmuscle myosin is encoded by spaghetti-squash, a gene required for cytokinesis in Drosophila.
Cell
65
,
1177
1189
Knecht
D. A.
,
Loomis
W. F.
(
1987
).
Antisense RNA inactivation of myosin heavy chain gene expression in Dictyosteliumdiscoideum.
Science
236
,
1081
1085
Kubalek
E. W.
,
Uyeda
T. Q. P.
,
Spudich
J. A.
(
1992
).
A Dictyostelium myosin II lacking a proximal 58-kDa portion of the tail is functional in vitro and in vivo.
Mol. Biol. Cell
3
,
1455
1462
Kuczmarski
E. R.
,
Palivos
L.
,
Aguado
C.
,
Yao
Z.
(
1991
).
Stopped-flow measurement of cytoskeletal contraction: Dictyostelium myosin II is specifically required for contraction of amoeba cytoskeletons.
J. Cell Biol
114
,
1191
1199
Lowey
S.
,
Waller
G. S.
,
Trybus
K. M.
(
1993
).
Skeletal muscle myosin light chains are essential for physiological speeds of shortening.
Nature
365
,
454
456
Mabuchi
I.
,
Okuno
M.
(
1977
).
The effect of myosin antibody on the division of starfish blastomeres.
J. Cell Biol
74
,
251
263
Manstein
D. J.
,
Titus
M. A.
,
DeLozanne
A.
,
Spudich
J. A.
(
1989
).
Gene replacement in Dictyostelium: generation of myosin null mutants.
EMBO J
8
,
923
932
Okamoto
Y.
,
Sekine
T.
,
Grammer
J.
,
Yount
R. G.
(
1986
).
The essential light chains constitute part of the active site of smooth muscle myosin.
Nature
324
,
78
80
Ostrow
B. D.
,
Chen
P.
,
Chisholm
R. L.
(
1994
).
Expression of a myosin regulatory light chain phosphorylation site mutant complements the cytokinesis and developmental defects of Dictyostelium RMLC null cells.
J. Cell Biol
127
,
1945
1955
Pagh
K.
,
Gerisch
G.
(
1986
).
Monoclonal antibodies binding to the tail of Dictyostelium discoideum myosin: their effects on antiparallel and parallel assembly and actin-activated ATPase activity.
J. Cell Biol
103
,
1527
1538
Pollenz
R. S.
,
Chisholm
R. L.
(
1991
).
Dictyostelium discoideum essential myosin light chain: gene structure and characterization.
Cell Motil. Cytoskel
20
,
83
94
Pollenz
R. S.
,
Chen
T.-L. L.
,
Trivinos-Lagos
L.
,
Chisholm
R. L.
(
1992
).
The Dictyostelium essential light chain is required for myosin function.
Cell
69
,
951
962
Pope
B.
,
Wagner
P. D.
,
Weeds
A. G.
(
1981
).
Studies on the actomyosin ATPase and the role of the alkali light chains.
Eur. J. Biochem
117
,
201
206
Rayment
I.
,
Rypniewski
W. R.
,
Schmidt-Bäse
K.
,
Smith
R.
,
Tomchick
D. R.
,
Benning
M. M.
,
Winkelmann
D. A.
,
Wesenberg
G.
,
Holden
H. M.
(
1993
).
Three-dimensional structure of myosin subfragment-1: A molecular motor.
Science
261
,
50
58
Shelden
E.
,
Knecht
D. A.
(
1995
).
Mutants lacking myosin II cannot resist forces generated during multicellular morphogenesis.
J. Cell Sci
108
,
1105
1115
Sivaramakrishnan
M.
,
Burke
M.
(
1982
).
The free heavy chain of vertebrate skeletal myosin subfragment I shows full enzymatic activity.
J. Biol. Chem
257
,
1102
1105
Springer
M. L.
,
Patterson
B.
,
Spudich
J. A.
(
1994
).
Stage-specific requirement for myosin II during Dictyostelium development.
Development
120
,
2651
2660
Uyeda
T. Q. P.
,
Spudich
J. A.
(
1993
).
A functional recombinant myosin II lacking a regulatory light chain binding site.
Science
262
,
1867
1870
Traynor
D.
,
Tasaka
M.
,
Takeuchi
I.
,
Williams
J.
(
1994
).
Aberrant pattern formation in myosin heavy chain mutants of Dictyostelium.
Development
120
,
591
601
Vibert
P.
,
Cohen
C.
(
1988
).
Domains, motions and regulation in the myosin head.
J. Muscle Res. Cell Motil
9
,
296
305
Wagner
P. D.
,
Weeds
A. G.
(
1977
).
Studies on the role of myosin alkali light chains. Recombination and hybridization of light chains and heavy chains in subfragment-1 preparation.
J. Mol. Biol
109
,
455
473
Wagner
P. D.
,
Giniger
E.
(
1981
).
Hydrolysis of ATP and reversible binding to F-actin by myosin heavy chains free of all light chains.
Nature
292
,
560
562
Weeds
A. G.
,
Lowey
S.
(
1971
).
Substructure of the myosin molecule II. The light chains of myosin.
J. Mol. Biol
61
,
701
725
Wessels
D.
,
Soll
D. R.
,
Knecht
D.
,
Loomis
W. F.
,
DeLozanne
A.
,
Spudich
J. A.
(
1988
).
Cell motility and chemotaxis in Dictyostelium amoebae lacking myosin heavy chain.
Dev. Biol
128
,
164
177
Williams
J. G.
,
Duffy
K. T.
,
Lane
D. P.
,
McRobbie
S. J.
,
Harwood
A. J.
,
Traynor
D.
,
Kay
R. R.
,
Jermyn
K. A.
(
1989
).
Origins of the prestalk-prespore pattern in Dictyostelium development.
Cell
59
,
1157
1163
Xie
X.
,
Harrison
D. H.
,
Schlichting
I.
,
Sweet
R. M.
,
Kalabokis
V. N.
,
Szent-Györgyi
A. G.
,
Cohen
C.
(
1994
).
Structure of the regulatory domain of scallop myosin at 2.8Å resolution.
Nature
368
,
306
312
Young
P. E.
,
Richman
A. M.
,
Ketchum
A. S.
,
Kiehart
D. P.
(
1993
).
Morphogenesis in Drosophila requires nonmuscle myosin heavy chain function.
Genes Dev
7
,
29
41
This content is only available via PDF.