Myosin II mutant Dictyostelium amoebae crawl more slowly than wild-type cells. Thus, myosin II must contribute to amoeboid locomotion. We propose that contractile forces generated by myosin II help the cell's rear edge to detach from the substratum and retract, allowing the cell to continue forward. To test this hypothesis, we measured the speed of wild-type and myosin II null mutant Dictyostelium cells on surfaces of varying adhesivity. As substratum adhesivity increased, the speed of myosin II null mutant cells decreased substantially compared to wild-type cells, suggesting that the mutant is less able to retract from sticky surfaces. Furthermore, interference reflection microscopy revealed a myosin-II-dependent contraction in wild-type but not null mutant cells that is consistent with a balance of adhesive and contractile forces in retraction. Although myosin II null mutant cells have a defect in retraction, pseudopod extension does not cause the cells to become elongated on sticky surfaces. This suggests a mechanism, based possibly on cytoskeletal tension, for regulating cell shape in locomotion. The tension would result from the transmission of tractional forces through the cytoskeletal network, providing the myosin II null mutant with a limited means of retraction and cell division on a surface.

REFERENCES

REFERENCES
Bell
G. I.
(
1978
).
Models for the specific adhesion of cells to cells.
Science
200
,
618
627
Bray
D.
,
White
J. G.
(
1988
).
Cortical flow in animal cells.
Science
239
,
883
888
Chen
W.-T.
(
1979
).
Induction of spreading during fibroblast movement.
J. Cell Biol
81
,
684
691
Chen
W.-T.
(
1981
).
Mechanism of retraction of the trailing edge during fibroblast movement.
J. Cell Biol
90
,
187
200
DiMilla
P. A.
,
Barbee
K.
,
Lauffenburger
D. A.
(
1991
).
Mathematical model for the effects of adhesion and mechanics on cell migration speed.
Biophys. J
60
,
15
37
DiMilla
P. A.
,
Stone
J. A.
,
Quinn
J. A.
,
Albelda
S. M.
,
Lauffenburger
D. A.
(
1993
).
Maximal migration of human smooth muscle cells on fibronectin and type IV collagen occurs at an intermediate attachment strength.
J. Cell Biol
122
,
729
737
Duband
J.-L.
,
Dufour
S.
,
Yamada
S. S.
,
Yamada
K. M.
,
Thiery
J. P.
(
1991
).
Neural crest cell locomotion induced by antibodies to β1integrins: a tool for studying the roles of substratum molecular avidity and density in migration.
J. Cell Sci
98
,
517
532
Fukui
Y.
,
De Lozanne
A.
,
Spudich
J. A.
(
1990
).
Structure and function of the cytoskeleton of a Dictyostelium myosin-defective mutant.
J. Cell Biol
110
,
367
378
Gingell
D.
,
Todd
I.
,
Owens
N.
(
1982
).
Interaction between intracellular vacuoles and the cell surface analysed by finite aperture theory interference reflection microscopy.
J. Cell Sci
54
,
287
298
Gingell
D.
,
Vince
S.
(
1982
).
Substratum wettability and charge influence the spreading of Dictyostelium amoebae and the formation of ultrathin cytoplasmic lamellae.
J. Cell Sci
54
,
255
285
Goodman
S. L.
,
Risse
G.
,
von der Mark
K.
(
1989
).
The E8 subfragmentof laminin promotes locomotion of myoblasts over extracellular matrix.
J. Cell Biol
109
,
799
809
Hendey
B.
,
Klee
C. B.
,
Maxfield
F. R.
(
1992
).
Inhibition of neutrophil chemokinesis on vitronectin by inhibitors of calcineurin.
Science
258
,
296
299
Heuser
J.
,
Zhu
Q.
,
Clarke
M.
(
1993
).
Proton pumps populate the contractile vacuoles of Dictyostelium amoebae.
J. Cell Biol
121
,
1311
1327
Jay
P. Y.
,
Elson
E. L.
(
1992
).
Surface particle transport mechanism independent of myosin II in Dictyostelium.
Nature
356
,
438
440
Kolega
J.
(
1986
).
Effects of mechanical tension on protrusive activity and microfilament and intermediate filament organization in an epidermal epithelium moving in culture.
J. Cell Biol
102
,
1400
1411
Kucik
D. F.
,
Kuo
S. C.
,
Elson
E. L.
,
Sheetz
M. P.
(
1991
).
Preferential attachment of membrane glycoproteins to the cytoskeleton at the leading edge of lamella.
J. Cell Biol
114
,
1029
1036
Kuo
S. C.
,
Lauffenburger
D. A.
(
1993
).
Relationship between receptor/ligand binding affinity and adhesion strength.
Biophys. J
65
,
2191
2200
Manstein
D. J.
,
Titus
M. A.
,
De Lozanne
A.
,
Spudich
J. A.
(
1989
).
Gene replacement in Dictyostelium: generation of myosin null mutants.
EMBO J
8
,
923
932
Nelson
G. A.
,
Roberts
T. M.
,
Ward
S.
(
1982
).
Caenorhabditis elegans spermatazoan locomotion: amoeboid movement with almost no actin.
J. Cell Biol
92
,
121
131
Pasternak
C.
,
Spudich
J. A.
,
Elson
E. L.
(
1989
).
Capping of surface receptors and concomitant cortical tension are generated by conventional myosin.
Nature
341
,
549
551
Pasternak
C.
,
Elson
E. L.
(
1990
).
Mapping regional mechanical properties of a cell during chemotaxis.
J. Cell Biol
111
,
7
–.
Sepsenwol
S.
,
Taft
S. J.
(
1990
).
In vitro induction of crawling in the amoeboid sperm of the nematode parasite, Ascaris suum.
Cell Motil. Cytoskel
15
,
99
110
Small
J. V.
(
1989
).
Microfilament-based motility in non-muscle cells.
Curr. Opin. Cell Biol
1
,
75
79
Spudich
J. A.
(
1989
).
In pursuit of myosin function.
Cell Regul
1
,
1
11
Todd
I.
,
Mellor
J. S.
,
Gingell
D.
(
1988
).
Mapping cell-glass contacts of Dictyostelium amoebae by total internal reflection aqueous fluorescence overcomes a basic ambiguity of interference reflection microscopy.
J. Cell Sci
89
,
107
114
Tourtellot
M. K.
,
Collins
R. D.
,
Bell
W. J.
(
1991
).
The problem of movelength and turn definition in analysis of orientation data.
J. Theor. Biol
150
,
287
297
Wessels
D.
,
Soll
D. R.
,
Knecht
D.
,
Loomis
W. F.
,
De Lozanne
A.
,
Spudich
J.
(
1988
).
Cell motility and chemotaxis in Dictyostelium amebae lacking myosin heavy chain.
Dev. Biol
128
,
164
177
Yumura
S.
,
Mori
H.
,
Fukui
Y.
(
1984
).
Localization of actin and myosin for the study of ameboid movement in Dictyostelium using improved immunofluorescence.
J. Cell Biol
99
,
894
899
This content is only available via PDF.