The budding yeast Pichia pastoris responds to methanolic media by synthesizing high levels of cytosolic enzymes (e.g. formate dehydrogenase) and peroxisomal enzymes (e.g. alcohol oxidase), which are necessary to assimilate this carbon source. Major alterations in cellular metabolism are initiated upon a shift in carbon source to ethanol or glucose. These alterations require the synthesis of new proteins and the rapid degradation of those enzymes no longer needed for methanol utilization. In this study, we have measured cytosolic and peroxisomal enzyme activities and examined the fate of morphologically distinct peroxisomes to assess the degradative response of this yeast during nutrient adaptation. Utilizing biochemical, morphological and genetic approaches, we have shown that there exist in P. pastoris at least two pathways for the sequestration of peroxisomes into the vacuole for degradation. The ethanol-induced pathway is independent of protein synthesis and includes an intermediate stage in which individual peroxisomes are sequestered into autophagosomes by wrapping membranes, which then fuse with the vacuole. This process is analogous to macroautophagy. The glucose-induced pathway invokes the engulfment of clusters of peroxisomes by finger-like protrusions of the vacuole by a process analogous to microautophagy. Unlike ethanol adaptation, glucose stimulated the degradation of formate dehydrogenase as well. Peroxisomes remained outside the vacuoles of glucose-adapted cycloheximide-treated normal cells, suggesting that protein synthesis is required for peroxisome entry into the yeast vacuole. Two complementary mutants (gsa1 and gsa2) that are unable to degrade peroxisomes or formate dehydrogenase during glucose adaptation were isolated. The mutated gene products appear to function in one or more events upstream of degradation within the vacuole, since ethanol-induced peroxisome degradation proceeded normally in these mutants and peroxisomes were found outside the vacuoles of glucose-adapted gsa2 cells. Mutants lacking vacuolar proteinases A and B were unable to degrade alcohol oxidase or formate dehydrogenase during ethanol or glucose adaptation. Peroxisomes were found to accumulate within the vacuoles of these proteinase mutants during adaptation. Combined, the results suggest that there exist in Pichia pastoris two independent pathways for the sequestration of peroxisomes into the vacuole, the site of degradation.

REFERENCES

Baba
M.
,
Takeshige
K.
,
Baba
N.
,
Ohsumi
Y.
(
1994
).
Ultrastructural analysis of the autophagic process in yeast: Detection of autophagosomes and their characterization.
J. Cell Biol
124
,
903
913
Betz
H.
,
Weiser
U.
(
1976
).
Protein degradation and proteinases during yeast sporulation.
Eur. J. Biochem
62
,
65
76
Bormann
C.
,
Sahm
H.
(
1978
).
Degradation of microbodies in relation to activities of alcohol oxidase and catalase in Candida boidinii.
Arch. Microbiol
117
,
67
72
Bruinenberg
P. G.
,
Veenhuis
M.
,
van Dijken
J. P.
,
Duine
J. A.
,
Harder
W.
(
1982
).
A quantitative analysis of selective inactivation of peroxisomal enzymes in the yeast Hansenula polymorpha by high-performance liquid chromatography.
FEMS Microbiol. Lett
15
,
45
50
Burlini
N.
,
Morandi
S.
,
Pellegrini
R.
,
Tortora
P.
,
Guerritore
A.
(
1989
).
Studies on the degradative mechanism of phosphoenolpyruvate carboxykinase from the yeast Saccharomyces cerevisiae.
Biochim. Biophys. Acta
1014
,
153
161
Chiang
H.-L.
,
Schekman
R.
(
1991
).
Regulated import and degradation of a cytosolic protein in the yeast vacuole.
Nature
350
,
313
318
Cregg
J. M.
,
Barringer
K. J.
,
Hessler
A. Y.
,
Madden
K. R.
(
1985
).
Pichia pastoris as a host system for transformations.
Mol. Cell. Biol
5
,
3376
3385
Cregg
J. M.
,
van der Klei
I. J.
,
Sulter
G. J.
,
Veenhuis
M.
,
Harder
H.
(
1990
).
Peroxisome-deficient mutants of Hansenula polymorpha.
Yeast
6
,
87
97
Dunn
W. A.
Jr.
(
1990
).
Studies on the mechanisms of autophagy: Formation of the autophagic vacuole.
J. Cell Biol
110
,
1923
1933
Dunn
W. A.
Jr.
(
1990
).
Studies on the mechanisms of autophagy: Maturation of the autophagic vacuole.
J. Cell Biol
110
,
1935
1945
Egli
Th.
,
van Dijken
J. P.
,
Veenhuis
M.
,
Harder
W.
,
Fiechter
A.
(
1980
).
Methanol metabolism in yeasts: Regulation of the synthesis of catabolic enzymes.
Arch. Microbiol
124
,
115
121
Egner
R.
,
Thumm
M.
,
Straub
M.
,
Simeon
A.
,
Schuller
H.-J.
,
Wolf
D. H.
(
1993
).
Tracing intracellular proteolytic pathways: Proteolysis of fatty acid synthase and other cytoplasmic proteins in the yeast Saccharomyces cerevisiae.
J. Biol. Chem
268
,
27269
27276
Fukui
S.
,
Kawamoto
S.
,
Yasuhara
S.
,
Tanaka
A.
,
Osumi
M.
,
Imaizumi
F.
(
1975
).
Microbody of methanol-grown yeasts: Localization of catalase and flavin-dependent alcohol oxidase in the isolated microbody.
Eur. J. Biochem
59
,
561
566
Fukui
S.
,
Tanaka
A.
,
Kawamoto
S.
,
Yasuhara
S.
,
Teranishi
Y.
,
Osumi
M.
(
1975
).
Ultrastructure of methanol-utilizing yeast cells: Appearance of microbodies in relation to high catalase activity.
J. Bacteriol
123
,
317
328
Funaguma
T.
,
Toyoda
Y.
,
Sy
J.
(
1985
).
Catabolite inactivation of fructose 1,6-bisphosphatase and cytoplasmic malate dehydrogenase in yeast.
Biochem. Biophys. Res. Commun
130
,
467
471
Hill
D. J.
,
Hann
Ao. C.
,
Lloyd
D.
(
1985
).
Degradative inactivation of the peroxisomal enzyme, alcohol oxidase, during adaptation of methanol-grown Candida boidinii to ethanol.
Biochem. J
232
,
743
750
Hilt
W.
,
Wolf
D. H.
(
1992
).
Stress-induced proteolysis in yeast.
Mol. Microbiol
6
,
2437
2442
Holzer
H.
,
Purwin
C.
(
1986
).
How does glucose initiate proteolysis of yeast fructose-1,6-bisphosphatase?.
Biomed. Biochim. Acta
45
,
1657
1663
Hou
C. T.
,
Patel
R. N.
,
Laskin
A. I.
,
Barnabe
N.
(
1982
).
NAD-linked formate dehydrogenase from methanol-grown Pichia pastoris NRRL-Y-7556.
Arch. Biochem. Biophys
216
,
296
305
Jones
E. W.
(
1977
).
Proteinase mutants of S. cerevisiae.
Genetics
85
,
23
33
Jones
E. W.
(
1991
).
Tackling the protease problem in S. cerevisiae.
Meth. Enzymol
194
,
428
453
Mortimore
G. E.
,
Lardeux
B. R.
,
Adams
C. E.
(
1988
).
Regulation of microautophagy and basal protein turnover in rat liver.
J. Biol. Chem
263
,
2506
2512
Sahm
H.
,
Wagner
F.
(
1973
).
Microbial assimilation of methanol: The ethanol-and methanol-oxidizing enzymes of the yeast Candida boidinii.
Eur. J. Biochem
36
,
250
256
Spong
A. P.
,
Subramani
S.
(
1993
).
Cloning and characterization of PAS5: A gene required for peroxisome biogenesis in the methylotrophic yeast Pichia pastoris.
J. Cell Biol
123
,
535
548
Takeshige
K.
,
Baba
M.
,
Tsuboi
S.
,
Noda
T.
,
Ohsumi
Y.
(
1992
).
Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction.
J. Cell Biol
119
,
301
311
Teichert
U.
,
Mechler
B.
,
Muller
H.
,
Wolf
D. H.
(
1987
).
Protein degradation in yeast.
Biochem. Soc. Trans
15
,
811
815
Teichert
U.
,
Mechler
B.
,
Muller
H.
,
Wolf
D. H.
(
1989
).
Lysosomal (vacuolar) proteinases of yeast are essential catalysts for protein degradation, differentiation, and cell survival.
J. Biol. Chem
264
,
16037
16045
Trumbly
R. J.
(
1992
).
Glucose repression in the yeast Saccharomyces cerevisiae.
Mol. Microbiol
6
,
15
21
Tuttle
D. L.
,
Lewin
A. S.
,
Dunn
W. A.
Jr.
(
1993
).
Selective autophagy of peroxisomes in methylotrophic yeasts.
Eur. J. Cell Biol
60
,
283
290
van der Klei
I. J.
,
Harder
W.
,
Veenhuis
M.
(
1991
).
Selective inactivation of alcohol oxidase in two peroxisome-deficient mutants of the yeast Hansenula polymorpha.
Yeast
7
,
813
821
Veenhuis
M.
,
Douma
A.
,
Harder
W.
,
Osumi
M.
(
1983
).
Degradation and turnover of peroxisomes in the yeast Hansenula polymorpha induced by selective inactivation of peroxisomal enzymes.
Arch. Microbiol
134
,
193
203
Zubenko
G. S.
,
Jones
E. W.
(
1981
).
Protein degradation, meiosis and sporulation in proteinase-deficient mutants of Saccharomyces cerevisiae.
Genetics
97
,
45
64
This content is only available via PDF.