Amoebae of Physarum polycephalum exhibit chemotactic responses to glucose and to cAMP. The chemotaxing amoebae exhibit alternating locomotive movements: relatively linear locomotion and movements that change the direction of the locomotion. Such locomotive activity is tightly coupled with the changes in the number and the positions of the pseudopods; cells have one pseudopod at the leading edge during their linear locomotion, while they have multiple pseudopods when they are changing the direction of locomotion. Treatment of cells with microtubule-disrupting reagents inhibited the chemotaxis of the cells. To characterize the role of the microtubule system in chemotaxis, we quantitatively analyzed the relationship between the positions of multiple pseudopods of the amoebae and the relative stability of the pseudopods during reorientation. No significant differences were observed in the pseudopod dynamics between the untreated and the treated amoebae. In both cases, one pseudopod at the leading edge continued to expand during linear locomotion. It then split into two to three pseudopods in the reorientation phase, and the positions of the multiple pseudopods were random. Among multiple pseudopods, however, the pseudopods closer to the microneedle tip were selectively stabilized more often than those distant from the tip in the presence of the microtubule system. By contrast, such preferential stabilization of the appropriate pseudopods was completely abolished by microtubule inhibitors. The microtubule-dependent selection of appropriately located pseudopods enables amoebae to turn correctly at the reorientation step.

REFERENCES

Allan
R. B.
,
Wilkinson
P. C.
(
1978
).
A visual analysis of chemotactic and chemokinetic locomotion of human neutrophil leucocytes. Use of a new chemotaxis assay with Candida albicans as gradient source.
Exp. Cell Res
111
,
191
203
Bennett
H.
,
Condeelis
J.
(
1984
).
Decoration with myosin subfragment-1 disrupts contacts between microfilaments and the cell membrane in isolated Dictyostelium cortices.
J. Cell Biol
99
,
1434
1440
Brundage
R. A.
,
Fogarty
K. E.
,
Tuft
R. A.
,
Fay
F. S.
(
1991
).
Calcium gradients underlying polarization and chemotaxis of eosinophils.
Science
254
,
703
706
Carboni
J. M.
,
Condeelis
J. S.
(
1985
).
Ligand-induced changes in the location of actin, myosin, 95k(-actinin), and 120k protein in amebae of Dictyostelium discoideum.
J. Cell Biol
100
,
1884
1893
Devreotes
P. N.
,
Zigmond
S. H.
(
1988
).
Chemotaxis in eukaryotic cells: a focus on leukocytes and Dictyostelium.
Annu. Rev. Cell Biol
4
,
649
686
Euteneuer
U.
,
Schliwa
M.
(
1984
).
Persistent, directional motility of cells and cytoplasmic fragments in the absence of microtubules.
Nature
310
,
58
61
Fukui
Y.
,
De Lozanne
A.
,
Spudich
J. A.
(
1990
).
Structure and function of the cytoskeleton of a Dictyostelium myosin-defective mutant.
J. Cell Biol
110
,
367
378
Gerisch
G.
,
Hulser
D.
,
Malchow
D.
,
Wick
U.
(
1975
).
Cell communication by periodic cyclic-AMP pulses.
Phil. Trans. R. Soc. B. Biol. Sci
272
,
181
192
Grynkiewicz
G.
,
Poenie
M.
,
Tsien
R. Y.
(
1985
).
A new generation of calcium indicators with greatly improved fluorescence properties.
J. Biol. Chem
260
,
3440
3450
Itano
N.
,
Hatano
S.
(
1991
).
F-actin bundling protein from Physarum polycephalum: purification and its capacity for co-bundling of actin filaments and microtubules.
Cell Motil. Cytoskel
19
,
244
254
Laclette
J. P.
,
Guerra
G.
,
Zetina
C.
(
1980
).
Inhibition of tubulin polymerization by mebendazole.
Biochem. Biophys. Res. Commun
92
,
417
423
Malawista
S. E.
,
de Boisfleury
A.
(
1982
).
The cytokineplast: purified, stable, and functional motile machinery from human blood polymorphonuclear leukocytes.
J. Cell Biol
95
,
960
973
Murray
J.
,
Vawter-Hugart
H.
,
Voss
E.
,
Soll
D.R.
) (
1992
).
Three-dimensional motility cycle in leukocytes.
Cell Motil. Cytoskel
22
,
211
223
Nishida
E.
,
Kuwaki
T.
,
Sakai
H.
(
1981
).
Phosphorylation of microtubule-associated protein (MAPs) and pH of the medium control interaction between MAPs and actin filaments.
J. Biochem
90
,
575
578
Ojakian
G. K.
,
Schwimmer
R.
(
1992
).
Antimicrotubule drugs inhibit the polarized insertion of an intracellular glycoprotein pool into the apical membrane of Madin-Darby canine kidney (MDCK) cells.
J. Cell Sci
103
,
677
687
Pollard
T. D.
,
Selden
S. C.
,
Maupin
P.
(
1984
).
Interaction of actin filaments with microtubules.
J. Cell Biol
99
,
33
–.
Rinnerthaler
G.
,
Geiger
B.
,
Small
J. V.
(
1988
).
Contact formation during fibroblast locomotion: involvement of membrane ruffles and microtubules.
J. Cell Biol
106
,
747
760
Rodionov
V. I.
,
Gyoeva
F. K.
,
Tanaka
E.
,
Bershadsky
A. D.
,
Vasiliev
J. M.
,
Gelfand
V. I.
(
1993
).
Microtubule-dependent control of cell shape and pseudopodial activity is inhibited by the antibody to kinesin motor domain.
J. Cell Biol
123
,
1811
1820
Sabry
J. H.
,
O'Connor
T. P.
,
Evans
L.
,
Toroian-Raymond
A.
,
Kirschner
M.
,
Bentley
D.
(
1991
).
Microtubule behavior during guidance of pioneer neuron growth cones in situ.
J. Cell Biol
115
,
381
395
Sattilaro
R. F.
(
1986
).
Interaction of microtubule-associated protein 2 with actin filaments.
Biochemistry
25
,
2003
2009
Stossel
T. P.
(
1989
).
From signal to pseudopod. How cells control cytoplasmic actin assembly.
J. Biol. Chem
264
,
18261
18264
Swanson
J. A.
,
Taylor
D. L.
(
1982
).
Local and spatially coordinated movements in Dictyostelium discoideum amoebae during chemotaxis.
Cell
28
,
225
232
Tanaka
E. M.
,
Kirschner
M. W.
(
1991
).
Microtubule behavior in the growth cones of living neurons during axon elongation.
J. Cell Biol
115
,
345
363
Taylor
D. L.
,
Condeelis
J. S.
(
1979
).
Cytoplasmic structure and contractility in amoeboid cells.
Int. Rev. Cytol
56
,
57
144
Uyeda
T. Q. P.
,
Furuya
M.
(
1989
).
Evidence for active interactions between microfilaments and microtubules in myxomycete flagellates.
J. Cell Biol
108
,
1727
1735
Varnum-Finney
B.
,
Edwards
K. B.
,
Voss
E.
,
Soll
D. R.
(
1987
).
Amoebae of Dictyostelium discoideum respond to an increasing temporal gradient of the chemoattractant cAMP with a reduced frequency of turning: evidence for a temporal mechanism in amoeboid chemotaxis.
Cell Motil. Cytoskel
8
,
7
17
Varnum-Finney
B. J.
,
Voss
E.
,
Soll
D. R.
(
1987
).
Frequency and orientation of pseudopod formation of Dictyostelium discoideum amoebae chemotaxing in a spatial gradient: further evidence for a temporal mechanism.
Cell Motil. Cytoskel
8
,
18
26
Wessels
D.
,
Murray
J.
,
Jung
G.
,
Hammer
J. A.
III
,
Soll
D. R.
(
1991
).
Myosin IB null mutants of Dictyostelium exhibit abnormalities in motility.
Cell Motil. Cytoskel
20
,
301
315
Wessels
D.
,
Vawter-Hugart
H.
,
Murray
J.
,
Soll
D. R.
(
1994
).
Three-dimensional dynamics of pseudopod formation and the regulation of turning during the motility cycle of Dictyostelium.
Cell Motil. Cytoskel
27
,
1
12
Zigmond
S. H.
(
1974
).
Mechanisms of sensing chemical gradients by polymorphonuclear leukocytes.
Nature
249
,
450
452
Zigmond
S. H.
(
1978
).
Chemotaxis by polymorphonuclear leukocytes.
J. Cell Biol
77
,
269
287
Zigmond
S. H.
,
Levitsky
H. I.
,
Kreel
B. J.
(
1981
).
Cell polarity: an examination of its behavioral expression and its consequences for polymorphonuclear leukocyte chemotaxis.
J. Cell Biol
89
,
585
592
This content is only available via PDF.