After the 13th nuclear division cycle of Drosophila embryogenesis, cortical microfilaments are reorganized into a hexagonal network that drives the subsequent cellularization of the syncytial embryo. Zygotic transcription of the nullo and serendipity-alpha genes is required for normal structuring of the microfilament network. When either gene is deleted, the network assumes an irregular configuration leading to the formation of multinucleate cells. To investigate the role of these genes during cellularization, we have made monoclonal antibodies to both proteins. The nullo protein is present from cycle 13 through the end of cellularization. During cycle 13, it localizes between interphase actin caps and within metaphase furrows. In cellularizing embryos, nullo co-localizes with the actin-myosin network and invaginates along with the leading edge of the plasma membrane. The serendipity-alpha (sry-alpha) protein co-localizes with nullo protein to the hexagonal network but, unlike the nullo protein, it localizes to the sides rather than the vertices of each hexagon. Mutant embryos demonstrate that neither protein translationally regulates the other, but the localization of the sry-alpha protein to the hexagonal network is dependent upon nullo.

REFERENCES

REFERENCES
Arking
R.
,
Parente
A.
(
1980
).
Effects of RNA inhibitors on the development of Drosophila embryos permeabilized by a new technique.
J. Exp. Zool
212
,
183
194
Edgar
B. A.
,
Schubiger
G.
(
1986
).
Parameters controlling transcriptional activation during early Drosophila development.
Cell
44
,
871
877
Foe
V. E.
,
Alberts
B. M.
(
1983
).
Studies of nuclear and cytoplasmicbehavior during the five mitotic cycles that precede gastrulation in Drosophila embryogenesis.
J. Cell Sci
61
,
31
70
Ibnsouda
S.
,
Schweisguth
F.
,
de Billy
G.
,
Vincent
A.
(
1993
).
Relationship between expression of serendipity- and cellularization of the Drosophila embryo as revealed by intraspecific transformation.
Development
119
,
471
483
James
A. A.
,
Vincent
A.
(
1986
).
The spatial distribution of a blastoderm stage-specific mRNA from the serendipity locus of Drosophila melanogaster.
Dev. Biol
118
,
474
479
Kellogg
D. R.
,
Field
C. M.
,
Alberts
B. M.
(
1989
).
Identification of microtubule-associated proteins in the centrosome, spindle, and kinetochore of the early Drosophila embryo.
J. Cell Biol
109
,
2977
2991
Kiehart
D. P.
,
Ketchum
A.
,
Young
P.
,
Lutz
D.
,
Alfentino
M. R. S.
(
1990
).
Contractile proteins in Drosophila development.
Ann. NY Acad. Sci
582
,
233
251
Mabuchi
I.
(
1986
).
Biochemical aspects of cytokinesis.
Int. Rev. Cytol
101
,
175
213
Merrill
P. T.
,
Sweeton
D.
,
Wieschaus
E.
(
1988
).
Requirements for autosomal gene activity during precellular stages of Drosophila melanogaster.
Development
104
,
495
509
Rose
L. S.
,
Wieschaus
E.
(
1992
).
The Drosophila cellularization gene nullo produces a blastoderm-specific transcript whose levels respond to the nucleocytoplasmic ratio.
Genes Dev
6
,
1255
1268
Salmon
E. D.
(
1989
).
Cytokinesis in animal cells.
Curr. Opin. Cell Biol
1
,
541
7
Satterwhite
L. L.
,
Pollard
T. D.
(
1992
).
Cytokinesis.
Curr. Opin. Cell Biol
4
,
43
52
Schejter
E.D.
,
Wieschaus
E.
(
1993
).
bottleneck acts as a regulator of the microfilament network governing cellularization of the Drosophila embryo.
Cell
75
,
373
385
Schroeder
T. E.
(
1990
).
The contractile ring and furrowing in dividing cells.
Ann. NY Acad. Sci
582
,
78
87
Schweisguth
F.
,
Lepesant
J.-A.
,
Vincent
A.
) (
1990
).
The serendipity-alpha gene encodes a membrane-associated protein required for the cellularization of the Drosophila embryo.
Genes Dev
4
,
922
931
Simpson
L.
,
Wieschaus
E.
(
1990
).
Zygotic activity of the nullo locus is required to stabilize the actin-myosin network during cellularization in Drosophila embryos.
Development
110
,
851
863
Smith
D. B.
,
Johnson
K. S.
(
1988
).
Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-tranferase.
Gene
67
,
31
40
Studier
F. W.
,
Moffat
B. A.
(
1986
).
Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes.
J. Mol. Biol
189
,
113
–.
Turner
F. R.
,
Mahowald
A. P.
(
1976
).
Scanning electron microscopy of Drosophila embryogenesis. I. The structure of the egg envelopes and the formation of the cellular blastoderm.
Dev. Biol
50
,
95
108
Vincent
A.
,
Colot
H. V.
,
Rosbash
M.
(
1985
).
Sequence and structure of the serendipity locus of Drosophila melanogaster. A densely transcribed region including a blastoderm-specific gene.
J. Mol. Biol
186
,
149
166
Warn
R. M.
,
Bullard
B.
,
Magrath
R.
(
1980
).
Changes in the distribution of cortical myosin during the cellularization of the Drosophila embryo.
J. Embryol. Exp. Morph
57
,
167
176
Warn
R. M.
,
Magrath
R.
(
1983
).
F-actin distribution during the cellularization of the Drosophila embryo visualized with FL-phalloidin.
Exp. Cell Res
143
,
103
114
Warn
R. M.
,
Robert-Nicoud
M.
(
1990
).
F-actin organization during the cellularization of the Drosophila embryo as revealed with a confocal laser scanning microscope.
J. Cell Sci
96
,
35
42
Whitfield
W. G. F.
,
Miller
S. E.
,
Saumweber
H.
,
Frasch
M.
,
Glover
D. M.
(
1988
).
Cloning of a gene encoding an antigen associated with the centrosome in Drosophila.
J. Cell Sci
89
,
467
480
Wieschaus
E.
,
Sweeton
D.
(
1988
).
Requirements for X-linked zygotic activity during cellularization of early Drosophila embryos.
Development
104
,
483
493
Young
P. E.
,
Pesacreta
T. C.
,
Kiehart
D. P.
(
1991
).
Dynamic changes in the distribution of cytoplasmic myosin during Drosophila embryogenesis.
Development
111
,
1
14
Zalokar
M.
,
Erk
I.
(
1976
).
Division and migration of nuclei during early embryogenesis of Drosophila melanogaster. J. Microsc. Biol.
Cell
25
,
97
106
This content is only available via PDF.