Tubulin is the major protein component of brain tissue. It normally undergoes a cycle of tyrosination-detyrosination on the carboxy terminus of its alpha-subunit and this results in subpopulations of tyrosinated tubulin and detyrosinated tubulin. Brain tubulin preparations also contain a third major tubulin subpopulation, composed of a non-tyrosinatable variant of tubulin that lacks a carboxy-terminal glutamyl-tyrosine group on its alpha-subunit (delta 2-tubulin). Here, the abundance of delta 2-tubulin in brain tissues, its distribution in developing rat cerebellum and in a variety of cell types have been examined and compared with that of total alpha-tubulin and of tyrosinated and detyrosinated tubulin. Delta 2-tubulin accounts for approximately 35% of brain tubulin. In rat cerebellum, delta 2-tubulin appears early during neuronal differentiation and is detected only in neuronal cells. This apparent neuronal specificity of delta 2-tubulin is confirmed by examination of its distribution in cerebellar cells in primary cultures. In such cultures, neuronal cells are brightly stained with anti-delta 2-tubulin antibody while glial cells are not. Delta 2-tubulin is apparently present in neuronal growth cones. As delta 2-tubulin, detyrosinated tubulin is enriched in neuronal cells, but in contrast with delta 2-tubulin, detyrosinated tubulin is not detectable in Purkinje cells and is apparently excluded from neuronal growth cones. In a variety of cell types such as cultured fibroblasts of primary culture of bovine adrenal cortical cells, delta 2-tubulin is confined to very stable structures such as centrosomes and primary cilia. Treatment of such cells with high doses of taxol leads to the appearance of delta 2-tubulin in microtubule bundles. Delta 2-tubulin also occurs in the paracrystalline bundles of protofilamentous tubulin formed after vinblastine treatment. Delta 2-tubulin is present in sea urchin sperm flagella and it appears in sea urchin embryo cilia during development. Thus, delta 2-tubulin is apparently a marker of very long-lived microtubules. It might represent the final stage of alpha-tubulin maturation in long-lived polymers.

REFERENCES

Alaimo-Beuret
D.
,
Matus
A.
(
1985
).
Changes in the cytoplasmic distribution of microtubule-associated protein 2 during the differentiation of cultured cerebellar granule cells.
Neuroscience
14
,
1103
1115
Arregui
C.
,
Busciglio
J.
,
Caceres
A.
,
Barra
H. S.
(
1991
).
Tyrosinated and detyrosinated microtubules in axonal processes of cerebellar macroneurons grown in culture.
J. Neurosci. Res
28
,
171
181
Audebert
S.
,
Desbruyeres
E.
,
Gruszczynski
C.
,
Koulakoff
A.
,
Gros
F.
,
Denoulet
P.
,
Edde
B.
(
1993
).
Reversible polyglutamylation of-and -tubulin and microtubule dynamics in mouse brain neurons. Mol. Biol.
Cell
4
,
615
626
Baas
P. W.
,
Black
M. M.
(
1990
).
Individual microtubules in the axon consist of domains that differ in both composition and stability.
J. Cell Biol
111
,
495
509
Binet
S.
,
Cohen
E.
,
Meininger
V.
(
1987
).
Heterogeneity of cold-stable and cold-labile tubulin in axon-and soma-enriched portions of the adult mouse brain.
Neurosci. Lett
77
,
166
170
Black
M. M.
,
Cochran
J. M.
,
Kurdyla
J. T.
(
1984
).
Solubility properties of neuronal tubulin: evidence for labile and stable microtubules.
Brain Res
450
,
231
236
Caceres
A.
,
Barker
G. A.
,
Binder
L. I.
(
1986
).
Immunocytochemical localisation of tubulin and microtubule associated protein 2 during the development of hippocampal neurons in culture.
J. Neurosci
6
,
714
722
Cambray-Deakin
M. A.
,
Burgoyne
R. D.
(
1987
).
Posttranslational modifications of-tubulin: acetylated and detyrosinated forms in axons of rat cerebellum.
J. Cell Biol
104
,
1569
1574
Caron
J. M.
,
Jones
A. L.
,
Kirschner
M. W.
(
1985
).
Autoregulation of tubulin synthesis in hepatocytes and fibroblasts.
J. Cell Biol
101
,
1763
1772
Cumming
R.
,
Burgoyne
R. D.
,
Lytton
N. A.
(
1984
).
Immunocytochemical demonstration of-tubulin modification during axonal maturation in the cerebellar cortex.
J. Cell Biol
98
,
347
351
Edde
B.
,
Rossier
J.
,
Le Caer
J. P.
,
Desbruyeres
E.
,
Gros
F.
,
Denoulet
P.
(
1990
).
Posttranslational glutamylation of-tubulin.
Science
247
,
83
85
Faivre-Sarrailh
C.
,
Rabie
A.
(
1988
).
Developmental study of factors controlling microtubule in vitro cold-stability in rat cerebellum.
Dev. Brain Res
42
,
199
204
Garner
J. A.
(
1988
).
Differential turnover of tubulin and neurofilament proteins in central nervous system neuron terminals.
Brain Res
458
,
309
318
Gundersen
G. G.
,
Kalnoski
M. H.
,
Bulinski
J. C.
(
1984
).
Distinct populations of microtubules: tyrosinated and nontyrosinated alpha tubulin are distributed differently in vivo.
Cell
38
,
779
789
Gundersen
G. G.
,
Bulinski
J. C.
(
1986
).
Microtubule arrays in differentiated cells contain elevated levels of a post-translationally modified form of tubulin.
Eur. J. Cell Biol
42
,
288
294
Gundersen
G. G.
,
Khawaja
S.
,
Bulinski
J. C.
(
1987
).
Postpolymerization detyrosination of-tubulin: a mechanism for subcellular differentiation of microtubules.
J. Cell Biol
105
,
251
264
Khawaja
S.
,
Gundersen
G. G.
,
Bulinski
J. C.
(
1988
).
Enhanced stability of microtubules enriched in detyrosinated tubulin is not a direct function of detyrosinated level.
J. Cell Biol
106
,
141
149
Kobayashi
T.
,
Flavin
M.
(
1981
).
Tubulin tyrosylation in invertebrates.
Comp. Biochem. Physiol
69
,
387
392
Kreis
T. E.
(
1987
).
Microtubules containing detyrosinated tubulin are less dynamic.
EMBO J
6
,
2597
2606
Lim
S. S.
,
Sammak
P. J.
,
Boisy
G. G.
(
1989
).
Progressive and spatially differentiated stability of microtubules in developing neuronal cells.
J. Cell Biol
109
,
253
263
Little
M.
,
Seehaus
T.
(
1988
).
Comparative analysis of tubulin sequences.
Comp. Biochem. Physiol
90
,
655
670
McKinney
M. M.
,
Parkinson
A.
(
1987
).
A simple, non-chromatographic procedure to purify immunoglobulins from serum and ascites fluid.
J. Immunol. Meth
96
,
271
278
Mitchell
J. J.
,
Low
R. B.
,
Woodcock-Mitchell
J. L.
(
1990
).
Cytomatrix synthesis in MDCK epithelial cells.
J. Cell. Physiol
143
,
501
511
Multigner
L.
,
Gagnon
J.
,
Van Dorsselaer
A.
,
Job
D.
(
1992
).
Stabilization of sea urchin flagellar microtubules by histone H1.
Nature
360
,
33
39
Paturle
L.
,
Wehland
J.
,
Margolis
R. L.
,
Job
D.
(
1989
).
Complete separation of tyrosinated, detyrosinated, and nontyrosinatable brain tubulin subpopulations using affinity chromatography.
Biochemistry
28
,
2698
2704
Paturle-Lafanechere
L.
,
Edde
B.
,
Denoulet
P.
,
Van Dorsselaer
A.
,
Mazarguil
H.
,
Le Caer
J. P.
,
Wehland
J.
,
Job
D.
(
1991
).
Characterization of a major brain tubulin variant which cannot be tyrosinated.
Biochemistry
30
,
10523
10528
Reinsch
S. S.
,
Mitchison
T. J.
,
Kirschner
M.
(
1991
).
Microtubule polymer assembly and transport during axonal elongation.
J. Cell Biol
115
,
365
379
Robson
S. J.
,
Burgoyne
R. D.
(
1989
).
Differential localisation of tyrosinated, detyrosinated, and acetylated-tubulins in neurites and growth cones of dorsal root ganglion neurons.
Cell Motil. Cytoskel
12
,
273
282
Sabry
J. H.
,
O'Connor
T. P.
,
Evans
L.
,
Toroian-Raymond
A.
,
Kirschner
M.
,
Bentley
D.
(
1991
).
Microtubule behavior during guidance of pioneer neuron growth cones in situ.
J. Cell Biol
115
,
381
395
Safaei
R.
,
Fisher
I.
(
1990
).
Turnover of cytoskeletal proteins.
Brain Res
533
,
83
90
Sahenk
Z.
,
Brady
S. T.
(
1988
).
Axonal tubulin and microtubules: morphologic evidence for stable region on axonal microtubules.
Cell Motil. Cytoskel
8
,
155
164
Tanaka
E. M.
,
Kirschner
M. W.
(
1991
).
Microtubule behavior in the growth cones of living neurons during axon elongation.
J. Cell Biol
115
,
345
363
Wehland
J.
,
Weber
K.
(
1987
).
Turnover of the carboxy-terminal tyrosine of-tubulin and means of reaching elevated levels of detyrosination in living cells.
J. Cell Sci
88
,
185
203
Wolff
A.
,
de Nechaud
B.
,
Chillet
D.
,
Mazarguil
H.
,
Desbruyeres
E.
,
Audebert
S.
,
Edde
B.
,
Gros
F.
,
Denoulet
P.
(
1992
).
Distribution of glutamylatedand -tubulin in mouse tissues using a specific monoclonal antibody, GT335.
Eur. J. Cell Biol
59
,
425
432
This content is only available via PDF.