The mechanism of interaction of chondrocytic cells with cartilage-specific type II collagen has been examined using HCS-2/8 human chondrosarcoma cells as a model system. By the criteria of specific collagen secretion and integrin expression profile, HCS-2/8 have a similar differentiated phenotype to normal chondrocytes and are therefore a good model system. HCS-2/8 cells were able to attach and spread on both native and heat-denatured pepsinised type II collagen, and assays using denatured cyanogen bromide fragments apparently localised the major cell binding site to the CB10 fragment. However, when they were used as soluble inhibitors, cyanogen bromide fragments were found to block adhesion to denatured collagen, but had no effect on either attachment or spreading on the native molecule. The inability of cyanogen bromide fragments to reproduce the cell binding site of native collagen demonstrated a strict dependence on collagen conformation. This was also reflected in the receptors that were employed by HCS-2/8 cells for binding to type II collagen: binding to native collagen was mediated by the integrin alpha 2 beta 1 while binding to denatured collagen was mediated by a novel alpha 5 beta 1-fibronectin bridge. The identification of this bridge adds to the mechanisms by which cells can bind to denatured collagens. The previously characterised KDGEA active site peptide from type I collagen was found to be inactive as an inhibitor of type II collagen-mediated adhesion. The implications of these findings for the strategies used to identify adhesive active sites within collagens are discussed. In particular, these data suggest that, unlike other integrin ligands, a synthetic peptide-based approach is not suitable for the identification of collagen active sites.
Conformation dependence of integrin-type II collagen binding. Inability of collagen peptides to support alpha 2 beta 1 binding, and mediation of adhesion to denatured collagen by a novel alpha 5 beta 1-fibronectin bridge
D.S. Tuckwell, S. Ayad, M.E. Grant, M. Takigawa, M.J. Humphries; Conformation dependence of integrin-type II collagen binding. Inability of collagen peptides to support alpha 2 beta 1 binding, and mediation of adhesion to denatured collagen by a novel alpha 5 beta 1-fibronectin bridge. J Cell Sci 1 April 1994; 107 (4): 993–1005. doi: https://doi.org/10.1242/jcs.107.4.993
Download citation file:
Advertisement
Cited by
JCS Journal Meeting 2023: Imaging Cell Dynamics

Our 2023 Journal Meeting on ‘Imaging Cell Dynamics’ will be held from 14-17 May 2023 in Lisbon, Portugal. Due to popular demand, we can currently only accept applications for online attendance. Apply now to attend this meeting virtually. Registration deadline: 31 March.
Call for papers: Cell and Tissue Polarity
-PolarityCFP.png?versionId=4696)
We are welcoming submissions for our next special issue, which will focus on ‘Cell and tissue polarity’ and will be guest edited by David Bryant. Submission deadline: 15 July.
Editorial: Publishing where it matters
Editor-in-Chief Michael Way outlines Journal of Cell Science’s plans for the upcoming year and introduces Seema Grewal as our new Executive Editor.
preLights 5th Birthday webinar

preLights, our preprint highlighting service, is celebrating its 5th birthday this year. To mark the occasion, join us online on 14 March 2023 at 16:00 GMT for a discussion, led by four preLights alumni, on how to identify and navigate the challenges and opportunities while shaping your career as an early-career researcher.
Cell Scientists to Watch

As a community-focused journal, Journal of Cell Science is keen to support the next generation of cell biologists. Check out Cell Scientists to Watch, our interview series featuring talented researchers who have recently set up their own labs.