RNA14 and RNA15 were originally identified by temperature-sensitive mutations that cause a rapid decrease in poly(A)-tail length and overall mRNA levels at the restrictive temperature. We have raised antibodies to the RNA14 and RNA15 proteins, and used subcellular fractionation and immunofluorescence to localize these proteins within the yeast cell. RNA14p is a 73 kDa protein found in both the nucleus and the cytoplasm, whilst RNA15p is a 42 kDa protein detected only in the nucleus. The observation that both proteins are found in the nucleus is in agreement with previous genetic data which suggest an interaction between RNA14p and RNA15p. Also the joint nuclear localization is consistent with the biochemical data suggesting a role in polyadenylation. The detection of significant amounts of RNA14p in the cytoplasm opens the possibility of a second function for this protein, either in cytoplasmic regulation of mRNA deadenylation or, more interestingly, in mRNA stability.

REFERENCES

Amberg
D. C.
,
Fleischmann
M.
,
Stagljar
I.
,
Cole
C. N.
,
Aebi
M.
(
1993
).
Nuclear PRP20 protein is required for mRNA export.
EMBO J
12
,
233
241
Bennett
M.
,
Piñol-Roma
S.
,
Staknis
D.
,
Dreyfuss
G.
,
Reed
R.
(
1992
).
Differential binding of heterogeneous nuclear ribonucleoproteins to mRNA precursors prior to spliceosome assembly in vitro.
Mol. Cell. Biol
12
,
3165
3175
Bloch
J. C.
,
Perrin
F.
,
Lacroute
F.
(
1978
).
Yeast temperature-sensitive mutants impaired in processing of poly(A)-containing RNAs.
Mol. Gen. Genet
165
,
123
127
Boeke
J.
,
Lacroute
F.
,
Fink
G. R.
(
1984
).
A positive selection for mutants lacking orotidine-5-phosphate decarboxylase activity in yeast: 5-Fluoro-orotic acid resistance.
Mol. Gen. Genet
197
,
345
346
Fisher
P. A.
,
Berrios
M.
,
Blobel
J.
(
1982
).
Isolation and characterization of a proteinaceous subnuclear fraction composed of nuclear matrix, peripheral lamina, and nuclear pore complexes from embryos of Drosophila melanogaster.
J. Cell Biol
92
,
674
686
Futcher
A. B.
,
Cox
B. S.
(
1984
).
Copy number and the stability of 2m circle-based artificial plasmids of Saccharomyces cerevisiae.
J. Bacteriol
157
,
283
290
Hill
J. E.
,
Myers
A. M.
,
Koerner
T. J.
,
Tzagoloff
A.
(
1986
).
Yeast/ E. coli shuttle vectors with multiple unique restriction sites.
Yeast
2
,
163
167
Hopper
A. K.
,
Traglia
M. R. W.
,
Dunst
H.
(
1990
).
The yeast RNA1 gene product necessary for RNA processing is located in the cytosol and apparently excluded from the nucleus.
J. Cell Biol
111
,
309
321
Ide
G. J.
,
Saunders
C. A.
(
1981
).
Rapid isolation of yeast nuclei.
Curr. Genet
4
,
85
90
Kilmartin
J. V.
,
Adams
A. E. M.
(
1984
).
Structural rearrangements of tubulin and actin during the cell cycle of the yeast Saccharomyces.
J. Cell Biol
98
,
922
923
Laemmli
U. K.
(
1970
).
Cleavage of structural proteins during the assembly of the head of bacteriophage T4.
Nature
227
,
680
685
Leeds
P.
,
Peltz
S. W.
,
Jacobson
A.
,
Culbertson
M. R.
(
1991
).
The product of the yeast UPF1 gene is required for rapid turnover of mRNAs containing a premature translation termination codon.
Genes Dev
5
,
2303
2314
Mann
C.
,
Buhler
J.-M.
,
Treich
I.
,
Sentenac
A.
(
1987
).
RPC40, a unique gene for a subunit shared between yeast RNA polymerase A and C.
Cell
48
,
627
637
Minvielle-Sebastia
L.
,
Winsor
B.
,
Bonneaud
N.
,
Lacroute
F.
(
1991
).
Mutations in the yeast RNA14 and RNA15 genes result in an abnormal mRNA decay rate; Sequence analysis reveals an RNA-binding domain in the RNA15 protein.
Mol. Cell. Biol
11
,
3075
3087
Mitchelson
A.
,
Simonelig
M.
,
Williams
C.
,
O'Hare
K.
(
1993
).
Homology with Saccharomyces cerevisiaeRNA14 suggests that phenotypic suppression in Drosophila melanogaster by suppressor of forked occurs at the level of RNA stability.
Genes Dev
7
,
241
249
Moreno
S.
,
Klar
A.
,
Nurse
P.
(
1991
).
Molecular genetic analysis of fission yeast Schizosaccharomyces pombe.
Meth. Enzymol
194
,
795
823
Phizicky
E. M.
,
Scwartz
R. C.
,
Abelson
J.
(
1986
).
Saccharomyces cerevisiae t-RNA ligase.
J. Biol. Chem
261
,
2978
2986
Pinõl-Roma
S.
,
Dreyfuss
G.
(
1992
).
Shuttling of pre-mRNA binding proteins between nucleus and cytoplasm.
Nature
355
,
730
732
Query
C. C.
,
Bentley
R. C.
,
Keene
J. D.
(
1989
).
A common RNA recognition motif identified within a defined U1 RNA binding domain of the 70 K U1 snRNP protein.
Cell
57
,
89
101
Ruby
S. W.
,
Abelson
J.
(
1991
).
Pre-mRNA splicing in yeast.
Trends Genet
7
,
79
85
Sachs
A. B.
,
Bond
M. W.
,
Kornberg
R. D.
(
1986
).
A single gene from yeast for both nuclear and cytoplasmic polyadenylate-binding proteins: domain structure and expression.
Cell
45
,
827
835
Sachs
A. B.
,
Davis
R. W.
(
1989
).
The poly(A)-binding protein is required for poly(A)-shortening and 60 S ribosomal subunit-dependent translation initiation.
Cell
58
,
857
867
Sachs
A. B.
,
Deardoff
J. A.
(
1992
).
Translation initiation requires the PAB-dependent poly(A)-ribonuclease in yeast.
Cell
70
,
961
973
Scherly
D.
,
Boelens
W.
,
van Venrooij
W. J.
,
Dathan
N. A.
,
Hamm
J.
,
Mattaj
I. W.
(
1989
).
Identification of the RNA binding segment of the human U1A protein and definition of its binding site on U1 snRNA.
EMBO J
8
,
4163
4170
Towbin
H.
,
Staehelin
T.
,
Gordon
J.
(
1979
).
Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure of some applications.
Proc. Nat. Acad. Sci. USA
76
,
4350
4354
Wahle
E.
(
1991
).
Purification and characterization of a mammalian polyadenylate polymerase involved in the 3-end processing of messenger RNA precursors.
J. Biol. Chem
266
,
3131
3139
Wahle
E.
,
Keller
W.
(
1992
).
The biochemistry of 3-end cleavage and polyadenylation of messenger RNA precursors.
Annu. Rev. Biochem
61
,
419
440
This content is only available via PDF.