Reorganization of centrosomal microtubule-organizing centres and the minus ends of microtubules occurs as the centrosomal ends of large microtubule bundles are repositioned and anchored to cell junctions in certain epithelial cells called inner pillar cells in the mouse organ of Corti. The microtubule bundle that assembles in each cell consists of two distinct microtubule arrays that run closely alongside each other. Both arrays are attached to the cell surface at their upper and lower ends. One of the arrays spans the entire length of a cell but the other is confined to its lower portion. Initially, about 3,000 microtubules elongate downwards from an apically situated centrosome in each cell. Subsequently, the minus ends of these microtubules, and the centrosome and its two centrioles, migrate for about 12 microns to the tip of a laterally directed projection. Then, a meshwork of dense material accumulates to link microtubule minus ends and the centrosome to cell junctions at the tip of the projection. Pericentriolar satellite bodies, which form after the initial burst of microtubule nucleation, may represent a condensed and inactive concentration of microtubule-nucleating elements. Surprisingly, as a cell matures, about 2,000 microtubules are eliminated from the centrosomal end of the microtubule bundle. However, about 2,000 microtubules are added to the basal portion of each bundle at levels that are remote with respect to the location of the centrosome. Possibly, these microtubules have escaped from the centrosome. If this is the case, then both the plus and minus ends of most of the errant microtubules are captured by sites at the cell surface where the ends are finally anchored. Alternatively, each cell possesses at least one other major microtubule-nucleating site (which does not possess centrioles) in addition to its centrosome.

REFERENCES

Achler
C.
,
Filmer
D.
,
Merte
C.
,
Drenckhahn
D.
(
1989
).
Role of microtubules in polarized delivery of apical membrane proteins to the brush border of the intestinal epithelium.
J. Cell Biol
109
,
179
189
Bacallao
R.
,
Antony
C.
,
Dotti
C.
,
Karsenti
E.
,
Stelzer
E. H. K.
,
Simons
K.
(
1989
).
The subcellular organization of Madin-Darby Canine Kidney cells during the formation of a polarized epithelium.
J. Cell Biol
109
,
2817
2832
Baas
P. W.
,
Joshi
H. C.
(
1992
).
-Tubulin distribution in the neuron: implications for the origins of neuritic microtubules.
J. Cell Biol
119
,
171
178
Bre
M.-H.
,
Kreis
T. E.
,
Karsenti
E.
(
1987
).
Control of microtubule nucleation and stability in Madin-Darby canine kidney cells: the occurrence of non-centrosomal, stable detyrosinated microtubules.
J. Cell Biol
105
,
1283
1296
Brinkley
B. R.
(
1985
).
Microtubule organizing centers.
Annu. Rev. Cell Biol
1
,
145
172
Flock
Å.
,
Bretscher
A.
,
Weber
K.
(
1982
).
Immunohistochemical localization of several cytoskeletal proteins in inner ear sensory and supporting cells.
Hearing Res
6
,
7
89
Gulley
R. L.
,
Reese
T. S.
(
1976
).
Intercellular junctions in the reticular lamina of the organ of Corti.
J. Neurocytol
5
,
479
507
Hudspeth
A. J.
(
1989
).
How the ear's works work.
Nature
341
,
397
404
Kimura
R. S.
(
1975
).
The ultrastructure of the organ of Corti.
Int. Rev. Cytol
42
,
173
222
Kimble
M.
,
Kuriyama
R.
(
1992
).
Functional components of microtubule-organizing centers.
Int. Rev. Cytol
136
,
1
50
Kronebusch
P. J.
,
Singer
S. J.
(
1987
).
The microtubule-organizing complex and the Golgi apparatus are co-localized around the entire nuclear envelope of interphasic cardiac myocytes.
J. Cell Sci
88
,
25
34
Kuijpers
W.
,
Tonnaer
E. L. G. M.
,
Peters
T. A.
,
Ramaekers
F. C. S.
(
1991
).
Expression of intermediate filament proteins in the mature inner ear of the rat and guinea pig.
Hearing Res
52
,
133
146
Mazia
D.
(
1987
).
The chromosome cycle and the centrosome cycle in the mitotic cycle.
Int. Rev. Cytol
100
,
49
92
McBeath
E.
,
Fujiwara
K.
(
1990
).
Microtubule detachment from the microtubule-organizing center as a key event in the complete turnover of microtubules in cells.
Eur. J. Cell Biol
52
,
1
16
Mogensen
M. M.
,
Tucker
J. B.
,
Stebbings
H.
(
1989
).
Microtubule polarities indicate that nucleation and capture of microtubules occurs at cell surfaces in Drosophila.
J. Cell Biol
108
,
1445
1452
Mogensen
M. M.
,
Tucker
J. B.
,
Baggalay
T. B.
(
1993
).
Multiple plasma membrane-associated MTOC systems in the acentrosomal cone cells of Drosophila ommatidia.
Eur J. Cell Biol
60
,
67
75
Rieder
C. L.
,
Borisy
G. G.
(
1982
).
The centrosome cycle in PtK2cells:asymmetric distribution and structural changes in the pericentriolar material. Biol.
Cell
44
,
117
132
Slepecky
N. B.
,
Chamberlain
S. C.
(
1983
).
Distribution and polarity of actin in inner ear supporting cells.
Hearing Res
10
,
359
370
Slepecky
N. B.
,
Ulfendahl
M.
(
1992
).
Actin-binding and microtubule-associated proteins in the organ of Corti.
Hearing Res
57
,
201
215
Steyger
P. S.
,
Furness
D. N.
,
Hackney
C. M.
,
Richardson
G. P.
(
1989
).
Tubulin and microtubules in cochlear hair cells: comparative immunocytochemistry and ultrastructure.
Hearing Res
42
,
1
16
Tassin
A.-M.
,
Maro
B.
,
Bornens
M.
(
1985
).
Fate of microtubule-organizing centers during myogenesis in vitro.
J. Cell Biol
100
,
35
46
Tucker
J. B.
(
1981
).
Cytoskeletal coordination and intercellular signalling during metazoan embryogenesis.
J. Embryol. Exp. Morph
65
,
1
25
Tucker
J. B.
(
1984
).
Spatial organization of microtubule-organizing centres and microtubules.
J. Cell Biol
99
,
55
–.
Tucker
J. B.
(
1992
).
The microtubule-organizing centre.
BioEssays
14
,
861
867
Tucker
J. B.
,
Paton
C. C.
,
Richardson
G. P.
,
Mogensen
M. M.
,
Russell
I. J.
(
1992
).
A cell surface-associated centrosomal layer ofmicrotubule-organizing material in the inner pillar cell of the mouse cochlea.
J. Cell Sci
102
,
215
226
Tucker
J. B.
,
Paton
C. C.
,
Henderson
C. G.
,
Mogensen
M. M.
(
1993
).
Microtubule rearrangement and bending during assembly of large curved microtubule bundles in mouse cochlear epithelial cells.
Cell Motil. Cytoskeleton
25
,
49
58
Vorobjev
I. A.
,
Chentsov
Y. S.
(
1983
).
The dynamics of reconstitution of microtubules around the cell center after cooling.
Eur. J. Cell Biol
30
,
149
153
Vorobjev
I. A.
,
Nadezhdina
E. S.
(
1987
).
The centrosome and its role in the organization of microtubules.
Int. Rev. Cytol
106
,
227
293
Yu
W.
,
Centonze
V. E.
,
Ahmad
F. J.
,
Baas
P. W.
(
1993
).
Microtubule nucleation and release from the neuronal centrosome.
J. Cell Biol
122
,
349
359
This content is only available via PDF.