gp57/42 is a membrane glycoprotein localized in the trans-Golgi, flagellar pocket region of the cell surface, endosomes and lysosomes of bloodstream forms of Trypanosoma brucei rhodesiense. Pulse-chase immunoprecipitation experiments revealed that gp57/42 acquires a unique N-linked oligosaccharide recognized by the CB1 monoclonal antibody 20–30 minutes after protein synthesis, probably in the trans-Golgi. We refer to gp57/42 molecules that carry the CB1 epitope as CB1-gp. Pulse labeled CB1-gp contained only one core protein, p57, when chase times were 30 minutes or less. As time of chase increased from 30 to 60 minutes, a new polypeptide, p42, appeared in N-glycanase-treated CB1 immunoprecipitates. Since p57 and p42 share 10 of 13 methionyl peptides, we conclude that p42 is a fragment of p57. Cleavage of p57 to p42 was not inhibited when cells were chased in two thiol protease inhibitors or in 3,4-diisocoumarin, but was inhibited by leupeptin. Cell surface biotinylation was used to determine if newly synthesized CB1-gp was transported from the Golgi to the surface. When cells were pulse labeled and chased for 30 minutes, as much as 40% of the radiolabeled CB1-gp could be biotinylated on the cell surface. The amount of CB1-gp that could be biotinylated decreased when chases were extended from 30 to 60 minutes, suggesting that pulse labeled CB1-gp left the surface. In contrast, pulse labeled variant surface glycoprotein molecules continued to accumulate on the surface where they could be biotinylated between 30 and 60 minutes of chase. Biotinylated CB1-gp derived from cells chased for 30 minutes contained p57 but no p42. However, when labeled cells were biotinylated after a 30 minute chase and then incubated another 30 minutes at 37 degrees C, the biotinylated CB1-gp contained both p57 and p42. The p57 in biotinylated CB1-gp was not cleaved to p42 if the additional incubation was done at 4 or 12 degrees C. This suggests that transport to a compartment where processing occurs and/or the processing enzymes are inhibited by low temperature. When surface biotinylation was done after a 60 minute chase, p42 was detected in biotinylated CB1-gp, suggesting that CB1-gp molecules had passed through the processing compartment and then appeared on the cell surface. Thus, a major portion of the newly synthesized CB1-gp is routed from the Golgi to endocytic compartments via the cell surface. In trypanosomes this process involves a unique surface domain, the flagellar pocket.(ABSTRACT TRUNCATED AT 400 WORDS)

REFERENCES

Balber
A. E.
(
1990
).
The pellicular membrane and the membranes of the flagellum and flagellar pocket: Two functionally discrete domains of the surface of bloodstream forms of African trypanosomes.
Crit. Rev. Immunol
10
,
177
201
Bangs
J. D.
,
Andrews
N. W.
,
Hart
G. W.
,
Englund
P. T.
(
1986
).
Post-translational modification and intracellular transport of a trypanosome variant surface glycoprotein.
J. Cell Biol
03
,
255
263
Bangs
J. D.
,
Doering
T. L.
,
Englund
P. T.
,
Hart
G. W.
(
1988
).
Biosynthesis of a variant surface glycoprotein of Trypanosoma brucei: Processing of the glycolipid membrane anchor N-linked oligosaccharides.
J. Biol. Chem
263
,
17697
17705
Bates
P. A.
,
Hermes
I.
,
Dwyer
D. M.
(
1990
).
Golgi-mediated post-translational processing of secretory acid phosphatase by Leishmania donovani promastigotes.
Mol. Biochem. Parasitol
39
,
247
255
Braun
M.
,
Waheed
A.
,
von Figura
K.
(
1989
).
Lysosomal acid phosphatase is transported to lysosomes via the cell surface.
EMBO J
8
,
3633
3640
Brickman
M. J.
,
Balber
A. E.
(
1993
).
Trypanosoma brucei rhodesiense: Membrane glycoproteins localized primarily in endosomes and lysosomes of bloodstream forms.
Exp. Parasitol
76
,
329
344
Burleigh
B. A.
,
Wells
C. W.
,
Clarke
M. W.
,
Gardiner
P. R.
(
1993
).
An integral membrane glycoprotein associated with an endocytic compartment of Trypanosoma vivax: identification and partial characterization.
J. Cell Biol
120
,
339
352
Carlsson
S. R.
,
Fukuda
M.
(
1990
).
The polylactosaminoglycans of human lysosomal membrane glycoproteins Lamp-1 and Lamp-2.
J. Biol. Chem
265
,
20488
20495
Carlsson
S. R.
,
Fukuda
M.
(
1992
).
The lysosomal membrane glycoprotein lamp-1 is transported to lysosomes by two alternative pathways.
Arch. Biochem. Biophys
296
,
630
639
Carruthers
V. B.
,
Cross
G. A.
(
1992
).
High-efficiency clonal growth of bloodstream-and insect-form Trypanosoma brucei on agarose plates.
Proc. Nat. Acad. Sci. USA
89
,
8818
8821
Cazzulo
J. J.
,
Hellman
U.
,
Couso
R.
,
Parodi
A. J.
(
1990
).
Amino acid and carbohydrate composition of a lysosomal cysteine proteinase from Trypanosoma cruzi. Absence of phosphorylated mannose residues. Mol. Biochem.
Parasitol
38
,
41
48
Chen
J. W.
,
Murphy
T. L.
,
Willingham
M. C.
,
Pastan
I.
,
August
J. T.
(
1985
).
Identification of two lysosomal membrane glycoproteins.
J. Cell Biol
101
,
85
95
Chen
J. W.
,
Cha
Y.
,
Yuksel
K. U.
,
Gracy
R. W.
,
August
J. T.
(
1988
).
Isolation and sequencing of a cDNA clone encoding lysosomal membrane glycoprotein mouse LAMP-1. Sequence similarity to proteins bearing onco-differentiation antigens.
J. Biol. Chem
263
,
8754
8758
Coppens
I.
,
Opperdoes
F. R.
,
Courtoy
P. J.
,
Baudhuin
P.
(
1987
).
Receptor-mediated endocytosis in the bloodstream form of Trypanosoma brucei.
J. Protozool
34
,
465
473
Coppens
I.
,
Baudhuin
P.
,
Opperdoes
F. R.
,
Courtoy
P. J.
(
1993
).
Roleof acidic compartments in Trypanosoma brucei, with special reference to low-density lipoprotein processing.
Mol. Biochem. Parasitol
58
,
223
232
Cross
G. A. M.
(
1990
).
Cellular and genetic aspects of antigenic variation in trypanosomes.
Annu. Rev. Immunol
8
,
83
110
Fambrough
D. M.
,
Takeyasu
K.
,
Lippincott-Schwartz
J.
,
Siegel
N. R.
(
1988
).
Structure of LEP100, a glycoprotein that shuttles between lysosomes and the plasma membrane, deduced from the nucleotide sequence of the encoding cDNA.
J. Cell Biol
106
,
61
67
Ferguson
M. A.
,
Duszenko
M.
,
Lamont
G. S.
,
Overath
P.
,
Cross
G. A. M.
(
1986
).
Biosynthesis of Trypanosoma brucei variant surface glycoproteins: N-glycosylation and addition of a phosphatidylinositol membrane anchor.
J. Biol. Chem
261
,
356
362
Frommel
T. O.
,
Balber
A. E.
(
1987
).
Trypanosoma brucei brucei, T. brucei gambiense, and T. brucei rhodesiense: common glycoproteins and glycoprotein oligosaccharide heterogeneity identified by lectin affinity blotting and endoglycosidase H treatment.
Exp. Parasitol
63
,
32
41
Frommel
T. O.
,
Seyfang
A.
,
Balber
A. E.
(
1988
).
Trypsinization of intact Trypanosoma brucei subsp.: Effects on variant specific and common glycoproteins.
Exp. Parasitol
65
,
290
302
Fukuda
M.
(
1991
).
Lysosomal membrane glycoproteins. Structure, biosynthesis, and intracellular trafficking.
J. Biol. Chem
266
,
21327
21330
Furuno
K.
,
Ishikawa
T.
,
Akasaki
K.
,
Yano
S.
,
Tanaka
Y.
,
Yamaguchi
Y.
,
Tsuji
H.
,
Himeno
M.
,
Kato
K.
(
1989
).
Morphological localization of a major lysosomal membrane glycoprotein in the endocytic membrane system.
J. Biochem
106
,
708
716
Furuno
K.
,
Yano
S.
,
Akasaki
K.
,
Tanaka
Y.
,
Yamaguchi
Y.
,
Tsuji
H.
,
Himeno
M.
,
Kato
K.
(
1989
).
Biochemical analysis of the movement of a major lysosomal membrane glycoprotein in the endocytic membrane system.
J. Biochem
106
,
717
722
Grab
D. J.
,
Ito
S.
,
Kara
A. K.
,
Rovis
L.
(
1984
).
Glycosyltransferase activities in Golgi fractions isolated from African trypanosomes.
J. Cell Biol
99
,
569
577
Grab
D. J.
,
Wells
C. W.
,
Shaw
M. K.
,
Webster
P.
,
Russo
D. C.
(
1992
).
Endocytosed transferrin in African trypanosomes is delivered to lysosomes and may not be recycled.
Eur. J. Cell Biol
59
,
398
404
Grab
D. J.
,
Shaw
M. K.
,
Wells
C. W.
,
Verjee
Y.
,
Russo
D. C. W.
,
Webster
P.
,
Naessens
J.
,
Fish
W. R.
(
1993
).
The transferrin receptor in African trypanosomes: identification, partial characterization and subcellular localization.
Eur. J. Cell Biol
62
,
114
126
Granger
B. L.
,
Green
S. A.
,
Gabel
C. A.
,
Howe
C. L.
,
Mellman
I.
,
Helenius
A.
(
1990
).
Characterization and cloning of lgp110, a lysosomal membrane glycoprotein from mouse and rat cells.
J. Biol. Chem
265
,
12036
12043
Gruenberg
J.
,
Howell
K. E.
(
1989
).
Membrane traffic in endocytosis: insights from cell-free assays.
Annu. Rev. Cell Biol
5
,
453
481
Harter
C.
,
Mellman
I.
(
1992
).
Transport of the lysosomal membrane glycoprotein lgp120 (lgp-A) to lysosomes does not require appearance on the plasma membrane.
J. Cell Biol
117
,
311
325
Howe
C. L.
,
Granger
B. L.
,
Hull
M.
,
Green
S. A.
,
Gabel
C. A.
,
Helenius
A.
,
Mellman
I.
(
1988
).
Derived protein sequence, oligosaccharides, and membrane insertion of the 120-kDa lysosomal membrane glycoprotein (lgp120): identification of a highly conserved family of lysosomal membrane glycoproteins.
Proc. Nat. Acad. Sci. USA
85
,
7577
7581
Huet
G.
,
Richet
C.
,
Demeyer
D.
,
Bisiau
H.
,
Soudan
B.
,
Tetaert
D.
,
Han
K. K.
,
Degand
P.
(
1992
).
Characterization of different proteolytic activities in Trypanosoma brucei brucei.
Biochim. Biophys. Acta
1138
,
213
221
Kornblatt
M. J.
,
Mpimbaza
G. W.
,
Lonsdale-Eccles
J. D.
(
1992
).
Characterization of an endopeptidase of Trypanosoma brucei brucei.
Arch. Biochem. Biophys
293
,
25
31
Langreth
S. G.
,
Balber
A. E.
(
1975
).
Protein uptake and digestion in bloodstream and culture forms of Trypanosoma brucei.
J. Protozool
22
,
40
53
Lee
N.
,
Wang
W.-C.
,
Fukuda
M.
) (
1990
).
Granulocytic differentiation in HL-60 cells is associated with increase of poly-N-acetyllactosamine in Ans-linked oligosaccharides attached to human lysosomal membrane glycoproteins.
J. Biol. Chem
265
,
20476
20487
Lippincott-Schwartz
J.
,
Fambrough
D. M.
(
1986
).
Lysosomal membrane dynamics: Structure and interorganellar movement of a major lysosomal membrane protein.
J. Cell Biol
102
,
1593
1605
Lippincott-Schwartz
J.
,
Fambrough
D. M.
(
1987
).
Cycling of theintegral membrane glycoprotein, LEP100, between plasma membrane and lysosomes: kinetic and morphological analysis.
Cell
49
,
669
677
Lis
H.
,
Sharon
N.
(
1986
).
Lectins as molecules and as tools.
Annu. Rev. Biochem
55
,
35
67
Lonsdale-Eccles
J. D.
,
Grab
D.
(
1987
).
Lysosomal and non-lysosomal peptidyl hydrolases of the bloodstream forms of Trypanosoma brucei.
Eur. J. Biochem
169
,
467
475
Mathews
P. M.
,
Martinie
J. B.
,
Fambrough
D. M.
(
1992
).
The pathway and targeting signal for delivery of the integral membrane glycoprotein LEP100 to lysosomes.
J. Cell Biol
118
,
1027
1040
Mbawa
Z. R.
,
Webster
P.
,
Lonsdale-Eccles
J. D.
(
1991
).
Immunolocalization of a cysteine protease within the lysosomal system of Trypanosoma congolense.
Eur. J. Cell Biol
56
,
243
250
Menz
B.
,
Winter
G.
,
Ilg
T.
,
Lottspeich
F.
,
Overath
P.
(
1991
).
Purification and characterization of a membrane-bound acid phosphatase of Leishmania mexicana.
Mol. Biochem. Parasitol
47
,
101
108
Nabi
I. R.
,
Le Bivic
A.
,
Fambrough
D.
,
Rodriguez-Boulan
E.
(
1991
).
An endogenous MDCK lysosomal membrane glycoprotein is targeted basolaterally before delivery to lysosomes.
J. Cell Biol
115
,
1573
1584
Pamer
E. G.
,
Davis
C. E.
,
Eakin
A.
,
So
M.
(
1990
).
Cloning and sequencing of the cysteine protease cDNA from Trypanosoma brucei rhodesiense.
Nucl. Acids Res
18
,
6141
–.
Pingel
S.
,
Duszenko
M.
(
1992
).
Identification of two distinct galactosyltransferase activities acting on the variant surface glycoprotein of Trypanosoma brucei.
Biochem. J
283
,
479
485
Robertson
C. D.
,
North
M. J.
,
Lockwood
B. C.
,
Coombs
G. H.
(
1990
).
Analysis of the proteinases of Trypanosoma brucei.
J. Gen. Microbiol
136
,
921
925
Russo
D. C. W.
,
Grab
D. J.
,
Lonsdale-Eccles
J. D.
,
Shaw
M. K.
,
Williams
D. J. L.
(
1993
).
Directional movement of variable surface glycoprotein-antibody complexes in Trypanosome brucei.
Eur. J. Cell Biol
62
,
432
441
Schell
D.
,
Stierhof
Y. D.
,
Overath
P.
(
1990
).
Purification and characterization of a tartrate-sensitive acid phosphatase of Trypanosoma brucei.
FEBS Lett
271
,
67
70
Seyfang
A.
,
Mecke
D.
,
Duszenko
M.
(
1990
).
Degradation, recycling, and shedding of Trypanosoma brucei variant surface glycoprotein.
J. Protozool
37
,
546
552
Sogin
M. L.
,
Gunderson
J. H.
,
Elwood
H. J.
,
Alonso
R. A.
,
Peattie
D. A.
(
1989
).
Phylogenetic meaning of the kingdom concept: an unusual ribosomal RNA from Giardia lamblia.
Science
243
,
75
77
Waheed
A.
,
Gottschalk
S.
,
Hille
A.
,
Krentler
C.
,
Pohlmann
R.
,
Braulke
T.
,
Hauser
H.
,
Geuze
H.
,
von Figura
K.
(
1988
).
Human lysosomal acid phosphatase is transported as a transmembrane protein to lysosomes in transfected baby hamster kidney cells.
EMBO J
7
,
2351
2358
Webster
P.
,
Grab
D. J.
(
1988
).
Intracellular colocalization of variant surface glycoprotein and transferrin-gold in Trypanosoma brucei.
J. Cell Biol
106
,
279
288
Williams
M. A.
,
Fukuda
M.
(
1990
).
Accumulation of membrane glycoproteins in lysosomes requires a tyrosine residue at a particular position in the cytoplasmic tail.
J. Cell Biol
111
,
955
966
Zamze
S. E.
,
Ashford
D. A.
,
Wooten
E. W.
,
Rademacher
T. W.
,
Dwek
R. A.
(
1991
).
Structural characterization of the asparagine-linked oligosaccharides from Trypanosoma brucei type II and type III variant surface glycoproteins.
J. Biol. Chem
266
,
20244
20261
This content is only available via PDF.