We have proposed previously a kinetochore motor-polar ejection model for chromosome congression to the metaphase plate where forces generated at the kinetochore are antagonized by away-from-the pole forces generated within each half-spindle on the chromosome arms. This model was based in large part on observations of the behavior of chromosomes on monopolar spindles. In these cells chromosomes typically become attached to the pole by only one kinetochore fiber. These mono-oriented chromosomes move to positions away from the pole even though they are pulled poleward at their kinetochores. Their arms are also ejected away from the pole when severed from the centromere. Here we have characterized further the properties of monopolar spindles in newt lung epithelial cells to determine the similarities between monopolar and bipolar spindles. We found no significant differences between monopolar and bipolar spindles over the parameters examined, which included: microtubule dynamics as measured by fluorescence redistribution after photobleaching; the ability of polar microtubule arrays to push chromosome arms away from the pole; the dependence of chromosome position relative to the pole on microtubule assembly; the number of kinetochore microtubules per kinetochore; and the directional instability of kinetochore motion during chromosome oscillations poleward and away-from-the-pole. As in bipolar spindles, kinetochore directional instability is characterized by abrupt switching between constant velocity phases of poleward and away-from-the-pole motion. From these data we conclude that the mechanism(s) responsible for chromosome positioning in monopolar spindles are fundamentally the same as those in bipolar spindles; only the geometry of the two spindle forms and the interplay between sister kinetochore directional instabilities are different. We also found no correlation in the kinetochore-to-pole distance with kinetochore microtubule number in monopolar spindles, but a strong qualitative correlation with microtubule density. This finding indicates that oscillations of mono-oriented chromosomes in both monopolar and bipolar spindles occur because chromosomes persist in poleward motion until they reach a density of polar microtubules sufficiently high to promote switching to away-from-the-pole motion. As the kinetochore and chromosome arms move away-from-the-pole, microtubule density decreases and the kinetochore switches to poleward motion, pulling the chromosome arms back into regions of higher microtubule density. The mechanism regulating kinetochore switching between poleward and away-from-the-pole motion is poorly understood, but may depend on tension at the kinetochore generated by pushing forces on the chromosome arms produced by the polar microtubule arrays.

REFERENCES

Ault
J. G.
,
Demarco
A. J.
,
Salmon
E. D.
,
Rieder
C. L.
(
1991
).
Studies on the ejection properties of asters: astral microtubule turnover influences the oscillatory behavior and positioning of mono-oriented chromosomes.
J. Cell Sci
99
,
701
710
Bajer
A. S.
,
Mole-Bajer
J.
(
1972
).
Spindle dynamics and chromosome movements.
Int. Rev. Cytol. Suppl
3
,
1
255
Bajer
A. S.
(
1982
).
Functional autonomy of monopolar spindles and evidence for oscillatory movement in mitosis.
J. Cell Biol
93
,
33
48
Book
J. A.
(
1945
).
Equilibrium of trivalents at metaphase.
Hereditas
31
,
449
–.
Brinkley
B. R.
,
Zinkowski
R. P.
,
Mollon
W. L.
,
Davis
F. M.
,
Pisegna
M. A.
,
Pershouse
M.
,
Rao
P. N.
(
1988
).
Movement and segregation of kinetochores experimentally detached from mammalian chromosomes.
Nature
336
,
251
254
Cassimeris
L. U.
,
Wadsworth
P.
,
Salmon
E. D.
(
1986
).
Dynamics of microtubule depolymerization in monocytes.
J. Cell Biol
102
,
2023
2032
Cassimeris
L. U.
,
Walker
R. A.
,
Pryer
N. K.
,
Salmon
E. D.
(
1987
).
Dynamic instability of microtubules.
BioEssays
7
,
149
154
Cassimeris
L.
,
Inoue
S.
,
Salmon
E. D.
(
1988
).
Microtubule dynamics in the chromosomal spindle fiber: analysis by fluorescence and high resolution polarization microscopy.
Cell Motil. Cytoskel
10
,
185
196
Cassimeris
L.
,
Salmon
E. D.
(
1991
).
Kinetochore microtubules shorten by loss of subunits at the kinetochores of prometaphase chromosomes.
J. Cell Sci
98
,
151
158
Centonze
V. E.
,
Borisy
G. G.
(
1991
).
Pole to chromosome movements induced at metaphase: sites of microtubule disassembly.
J. Cell Sci
100
,
205
211
Church
K.
,
Nicklas
R. B.
,
Lin
H. P.
(
1986
).
Micromanipulated bivalents can trigger mini-spindle formation in Drosophila melanogaster spermatocyte cytoplasm.
J. Cell Biol
103
,
2765
2773
Hayden
J. H.
,
Bowser
S. S.
,
Rieder
C. L.
(
1990
).
Kinetochores capture astral microtubules during chromosome attachment to the mitotic spindle: direct visualization in live newt lung cells.
J. Cell Biol
111
,
1039
1045
Hays
T. S.
,
Wise
D.
,
Salmon
E. D.
(
1982
).
Traction force on akinetochore at metaphase acts as a linear function of kinetochore fiber length.
J. Cell Biol
93
,
374
382
Hays
T. S.
,
Salmon
E. D.
(
1990
).
Poleward force at the kinetochore in metaphase depends on the number of kinetochore microtubules.
J. Cell Biol
110
,
391
404
Hyman
A. A.
,
Mitchison
T. J.
(
1991
).
Two different microtubule-based motor activities with opposite polarities in kinetochores.
Nature
351
,
206
211
Karsenti
E.
,
Newport
J.
,
Hubble
R.
,
Kirschner
M.
(
1984
).
Interconversion of metaphase and interphase microtubule arrays, as studied by the injection of centrosomes and nuclei into Xenopus eggs.
J. Cell Biol
98
,
1730
1745
Karsenti
E.
,
Newport
J.
,
Kirschner
M.
(
1984
).
Respective roles of centrosomes and chromatin in the conversion of microtubule arrays from interphase to metaphase.
J. Cell Biol
99
,
47
–.
Leslie
R. J.
,
Saxton
W. M.
,
Mitchison
T. J.
,
Neighbors
B.
,
Salmon
E. D.
,
McIntosh
J. R.
(
1984
).
Assembly properties of fluorescein-labeled tubulin in vitro before and after fluorescence bleaching.
J. Cell Biol
99
,
2146
2156
Leslie
R. J.
(
1992
).
Chromosomes attain a metaphase position on half-spindles in the absence of an opposing spindle.
J. Cell Sci
103
,
125
130
Mazia
D.
,
Paweletz
N.
,
Sluder
G.
,
Finze
E. M.
(
1981
).
Cooperation of kinetochores and poles in the establishment of monopolar mitotic apparatus.
Proc. Nat. Acad. Sci. USA
78
,
377
381
McIntosh
J. R.
,
Pfarr
C. M.
(
1991
).
Mitotic motors.
J. Cell Biol
115
,
577
585
Mitchison
T.
(
1989
).
Polewards microtubule flux in the mitotic spindle: Evidence from photoactivation of fluorescence.
J. Cell Biol
109
,
637
652
Mitchison
T.
,
Salmon
E. D.
(
1992
).
Poleward kinetochore fiber movement occurs during both metaphase and anaphase-A in newt lung cell mitosis.
J. Cell Biol
119
,
569
582
Mole-Bajer
J.
,
Bajer
A.
,
Owczarzak
A.
(
1975
).
Chromosome movement in prometaphase and aster transport in the newt.
Cytobios
13
,
45
65
Nislow
C.
,
Lombillo
V. A.
,
Kuriyama
R.
,
McIntosh
J. R.
(
1992
).
A plus-end-directed motor enzyme that moves antiparallel microtubules in vitro localizes to the interzone of mitotic microtubules.
Nature
359
,
543
547
Ostergren
G.
(
1951
).
The mechanism of co-orientation in bivalents and multivalents.
Hereditas
37
,
85
156
Rieder
C. L.
(
1982
).
The formation, structure, and composition of the mammalian kinetochore and kinetochore fiber.
Int. Rev. Cytol
79
,
1
57
Rieder
C. L.
,
Bowser
S. S.
(
1985
).
Correlative immunofluorescence and electron microscopy on the same section of epon-embedded material.
J. Histochem. Cytochem
33
,
165
171
Rieder
C. L.
,
Davison
E. A.
,
Jensen
L. C. W.
,
Cassimeris
L.
,
Salmon
E. D.
(
1986
).
Oscillatory movements of monooriented chromosomes and their position relative to the spindle pole result from the ejection properties of the aster and half-spindle.
J. Cell Biol
103
,
581
591
Rieder
C. L.
,
Alexander
S. P.
(
1990
).
Kinetochores are transported poleward along a single astral microtubule during chromosome attachment to the spindle in newt lung cells.
J. Cell Biol
110
,
81
95
Rieder
C. L.
,
Hard
R.
(
1990
).
Newt lung epithelial cells: cultivation, use, and advantages for biomedical research.
Int. Rev. Cytol
122
,
153
220
Rieder
C. L.
(
1991
).
Mitosis: towards a molecular understanding of chromosome behavior.
Curr. Opin. Cell Biol
3
,
59
66
Sawin
K. E.
,
Mitchison
T. J.
(
1991
).
Mitotic spindle assembly by two different pathways in vitro.
J. Cell Biol
112
,
925
940
Sawin
K. E.
,
Mitchison
T. J.
(
1991
).
Poleward microtubule flux in mitotic spindles assembled in vitro.
J. Cell Biol
112
,
941
954
Seto
T.
,
Kezer
J.
,
Pomerat
C. M.
(
1969
).
A cinematographic study of meiosis in salamander spermatocytes in vitro.
Z. Zellforsch. Mikrosk. Anat
94
,
407
424
Skibbens
R. V.
,
Rieder
C. L.
,
Salmon
E. D.
(
1992
).
The oscillatory motion of kinetochores partially severed from the bulk of the chromosome arms. Mol. Biol.
Cell
3
,
345
–.
Sluder
G.
,
Miller
F. J.
,
Rieder
C. L.
(
1986
).
Experimental separation of pronuclei in fertilized sea urchin eggs: chromosomes do not organize a spindle in the absence of centrosomes.
J. Cell Biol
103
,
1873
1881
Theurkauf
W. E.
,
Hawley
R. S.
(
1992
).
Meiotic spindle assembly in Drosophilia females: Behavior of nonexchanged chromosomes and the effects of mutations in the nod kinesin-like protein.
J. Cell Biol
116
,
1167
1180
Wadsworth
P.
,
Salmon
E. D.
(
1986
).
Analysis of the treadmilling model during metaphase of mitosis using fluorescence redistribution after photobleaching.
J. Cell Biol
102
,
1032
1038
Wadsworth
P.
,
Salmon
E. D.
(
1986
).
Preparation and characterization of fluorescent analogs of tubulin.
Meth. Enzymol
134
,
519
528
Waters
J. C.
,
Cole
R. W.
,
Rieder
C. L.
(
1993
).
The force-producing mechanism for centrosome separation during spindle formation in vertebrates is intrinsic to each aster.
J. Cell Biol
122
,
361
372
Wise
D.
(
1978
).
On the mechanism of prometaphase congression: chromosome velocity as a function of position on the spindle.
Chromosoma
69
,
231
241
This content is only available via PDF.