To contribute to a deeper understanding of M-phase control in eukaryotic cells, we have constructed a model based on the biochemistry of M-phase promoting factor (MPF) in Xenopus oocyte extracts, where there is evidence for two positive feedback loops (MPF stimulates its own production by activating Cdc25 and inhibiting Wee1) and a negative feedback loop (MPF stimulates its own destruction by indirectly activating the ubiquitin pathway that degrades its cyclin subunit). To uncover the full dynamical possibilities of the control system, we translate the regulatory network into a set of differential equations and study these equations by graphical techniques and computer simulation. The positive feedback loops in the model account for thresholds and time lags in cyclin-induced and MPF-induced activation of MPF, and the model can be fitted quantitatively to these experimental observations. The negative feedback loop is consistent with observed time lags in MPF-induced cyclin degradation. Furthermore, our model indicates that there are two possible mechanisms for autonomous oscillations. One is driven by the positive feedback loops, resulting in phosphorylation and abrupt dephosphorylation of the Cdc2 subunit at an inhibitory tyrosine residue. These oscillations are typical of oocyte extracts. The other type is driven by the negative feedback loop, involving rapid cyclin turnover and negligible phosphorylation of the tyrosine residue of Cdc2. The early mitotic cycles of intact embryos exhibit such characteristics. In addition, by assuming that unreplicated DNA interferes with M-phase initiation by activating the phosphatases that oppose MPF in the positive feedback loops, we can simulate the effect of addition of sperm nuclei to oocyte extracts, and the lengthening of cycle times at the mid-blastula transition of intact embryos.

REFERENCES

Clarke
P. R.
,
Hoffmann
I.
,
Draetta
G.
,
Karsenti
E.
(
1993
).
Dephosphorylation of cdc25-C by a type-2A protein phosphatase: Specific regulation during the cell cycle in Xenopus egg extracts. Mol. Biol.
Cell
4
,
397
411
Clarke
P. R.
,
Karsenti
E.
(
1991
).
Regulation of p34cdc2 protein kinase: new insights into protein phosphorylation and the cell cycle.
J. Cell Sci
100
,
409
414
Clarke
P. R.
,
Leiss
D.
,
Pagano
M.
,
Karsenti
E.
(
1992
).
Cyclin A-and cyclin B-dependent protein kinases are regulated by different mechanisms in Xenopus egg extracts.
EMBO J
11
,
1751
1761
Coleman
T. R.
,
Tang
Z.
,
Dunphy
W. G.
(
1993
).
Negative regulation of the Wee1 protein kinase by direct action of the Nim1/Cdr1 mitotic inducer.
Cell
72
,
919
929
Cyert
M. S.
,
Kirschner
M. W.
(
1988
).
Regulation of MPF activity in vitro.
Cell
53
,
185
195
Dasso
M.
,
Newport
J. W.
(
1990
).
Completion of DNA replication is monitored by a feedback system that controls the initiation of mitosis in vitro: studies in Xenopus.
Cell
61
,
811
823
Devault
A.
,
Fesquet
D.
,
Cavadore
J.-C.
,
Garrigues
A.-M.
,
Labbe
J.-C.
,
Lorca
T.
,
Picard
A.
,
Philippe
M.
,
Doree
M.
(
1992
).
Cyclin A potentiates maturation-promoting factor activation in the early Xenopus embryo via inhibition of the tyrosine kinase that phosphorylates cdc2.
J. Cell Biol
118
,
1109
1120
Dunphy
W. G.
,
Newport
J. W.
(
1988
).
Mitosis-inducing factors are present in a latent form during interphase in the Xenopus embryo.
J. Cell Biol
106
,
2047
2056
Enoch
T.
,
Nurse
P.
(
1991
).
Coupling M phase and S phase: controls maintaining the dependence of mitosis on chromosome replication.
Cell
65
,
921
923
Felix
M.-A.
,
Cohen
P.
,
Karsenti
E.
(
1990
).
cdc2 H1 kinase is negatively regulated by a type 2A phosphatase in the Xenopus early embryonic cell cycle: evidence from the effects of okadaic acid.
EMBO J
9
,
675
683
Felix
M.-A.
,
Labbe
J.-C.
,
Doree
M.
,
Hunt
T.
,
Karsenti
E.
(
1990
).
Triggering of cyclin degradation in interphase extracts of amphibian eggs by cdc2 kinase.
Nature
346
,
379
382
Felix
M.-A.
,
Pines
J.
,
Hunt
T.
,
Karsenti
E.
(
1989
).
A post-ribosomal supernatant from activated Xenopus eggs that displays post-translationally regulated oscillation of its cdc2+ mitotic kinase activity.
EMBO J
8
,
3059
3069
Ferrell
J. E.
Jr.
,
Wu
M.
,
Gerhardt
J. C.
,
Martin
G. S.
(
1991
).
Cell cycle tyrosine phosphorylation of p34cdc2 and a microtubule-associated protein kinase homolog in Xenopus oocytes and eggs.
Mol. Cell. Biol
11
,
1965
1971
Gautier
J.
,
Solomon
M. J.
,
Booher
R. N.
,
Bazan
J. F.
,
Kirschner
M. W.
(
1991
).
cdc25 is a specific tyrosine phosphatase that directly activates p34cdc2.
Cell
67
,
197
211
Gerhart
J.
,
Wu
M.
,
Kirschner
M.
(
1984
).
Cell cycle dynamics of an M-phase-specific cytoplasmic factor in Xenopus laevis oocytes and eggs.
J. Cell Biol
98
,
1247
1255
Glotzer
M.
,
Murray
A. W.
,
Kirschner
M. W.
(
1991
).
Cyclin is degraded by the ubiquitin pathway.
Nature
349
,
132
138
Goldbeter
A.
(
1991
).
A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase.
Proc. Nat. Acad. Sci. USA
88
,
9107
9111
Goldbeter
A.
,
Koshland
D. E.
Jr.
(
1981
).
An amplified sensitivity arising from covalent modification in biological systems.
Proc. Nat. Acad. Sci. USA
78
,
6840
6844
Hara
K.
,
Tydeman
P.
,
Kirschner
M.
(
1980
).
A cytoplasmic clock with the same period as the division cycle in Xenopus eggs.
Proc. Nat. Acad. Sci. USA
77
,
462
466
Hoffmann
I.
,
Clarke
P. R.
,
Marcote
M. J.
,
Karsenti
E.
,
Draetta
G.
(
1993
).
Phosphorylation and activation of human cdc25-C by cdc2-cyclin B and its involvement in the self-amplification of MPF at mitosis.
EMBO J
12
,
53
63
Hunt
T.
(
1991
).
Destruction's our delight.
Nature
349
,
100
101
Hutchison
C. J.
,
Cox
R.
,
Ford
C. C.
(
1988
).
The control of DNA replication in a cell-free extract that recapitulates a basic cell cycle in vitro.
Development
103
,
553
566
Izumi
T.
,
Walker
D. H.
,
Maller
J. L.
(
1992
).
Periodic changes in phosphorylation of the Xenopus cdc25 phosphatase regulate its activity. Mol. Biol.
Cell
3
,
927
939
Jessus
C.
,
Beach
D.
(
1992
).
Oscillation of MPF is accompanied by periodic association between cdc25 and cdc2-cyclin B.
Cell
68
,
323
332
Kumagai
A.
,
Dunphy
W. G.
(
1991
).
The cdc25 protein controls tyrosine dephosphorylation of the cdc2 protein in a cell-free system.
Cell
64
,
903
914
Kumagai
A.
,
Dunphy
W. G.
(
1992
).
Regulation of the cdc25 protein during the cell cycle in Xenopus extracts.
Cell
70
,
139
151
Lorca
T.
,
Labbe
J.-C.
,
Devault
A.
,
Fesquet
D.
,
Capony
J.-P.
,
Cavadore
J.-C.
,
Le Bouffant
F.
,
Doree
M.
(
1992
).
Dephosphorylation of cdc2 on threonine 161 is required for cdc2 kinase inactivation and normal anaphase.
EMBO J
11
,
2381
2390
Luca
F. C.
,
Ruderman
J. V.
(
1989
).
Control of programmed cyclin destruction in a cell-free system.
J. Cell Biol
109
,
1895
1909
Maddox
J.
(
1992
).
Is molecular biology yet a science?.
Nature
355
,
201
–.
Maller
J. L.
(
1991
).
Mitotic control.
Curr. Opin. Cell Biol
3
,
269
275
Masui
Y.
,
Markert
C. L.
(
1971
).
Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes.
J. Exp. Zool
177
,
129
146
Miake-Lye
R.
,
Newport
J.
,
Kirschner
M.
(
1983
).
Maturation-promoting factor induces nuclear envelope breakdown in cycloheximide-arrested embryos of Xenopus laevis.
J. Cell Biol
97
,
81
91
Murray
A. W.
(
1992
).
Creative blocks: cell-cycle checkpoints and feedback controls.
Nature
359
,
599
604
Murray
A. W.
(
1993
).
Turning on mitosis.
Curr. Biol
3
,
291
293
Murray
A. W.
,
Kirschner
M. W.
(
1989
).
Cyclin synthesis drives the early embryonic cell cycle.
Nature
339
,
275
280
Murray
A. W.
,
Solomon
M. J.
,
Kirschner
M. W.
(
1989
).
The role of cyclin synthesis and degradation in the control of maturation promoting factor activity.
Nature
339
,
280
286
Nurse
P.
(
1990
).
Universal control mechanism regulating onset of M-phase.
Nature
344
,
503
508
Smythe
C.
,
Newport
J. W.
(
1992
).
Coupling of mitosis to the completion of S phase in Xenopus occurs via modulation of the tyrosine kinase that phosphorylates p34cdc2.
Cell
68
,
787
797
Solomon
M. J.
(
1993
).
Activation of the various cyclin/cdc2 protein kinases.
Curr. Opin. Cell Biol
5
,
180
186
Solomon
M. J.
,
Glotzer
M.
,
Lee
T. H.
,
Philippe
M.
,
Kirschner
M. W.
(
1990
).
Cyclin activation of p34cdc2.
Cell
63
,
1013
1024
Solomon
M. J.
,
Lee
T.
,
Kirschner
M. W.
(
1992
).
Role of phosphorylation in p34cdc2 activation: identification of an activating kinase.
Mol. Biol
3
,
13
27
Tyson
J. J.
(
1991
).
Modeling the cell division cycle: cdc2 and cyclin interactions.
Proc. Nat. Acad. Sci. USA
88
,
7328
7332
Walker
D. H.
,
DePaoli-Roach
A. A.
,
Maller
J. L.
(
1992
).
Multiple roles for protein phosphatase 1 in regulating the Xenopus early embryonic cell cycle. Mol. Biol.
Cell
3
,
687
698
Wu
M.
,
Gerhart
J. C.
(
1980
).
Partial purification and characterization of the maturation-promoting factor from eggs of Xenopus laevis.
Dev. Biol
79
,
465
477
This content is only available via PDF.