Cytokinesis is developmentally controlled during Drosophila embryogenesis. It is omitted during the initial nuclear division cycles. The nuclei of the resulting syncytium are then cellularized at a defined stage, and cytokinesis starts in somatic cells with mitosis 14. However, cytokinesis never occurs in somatic cells of embryos homozygous or transheterozygous for mutations in the pebble gene. Interestingly, the process of cellularization, which involves steps mechanistically similar to cytokinesis, is not affected. Moreover, all the nuclear aspects of mitosis (nuclear envelope breakdown, chromosome condensation, spindle assembly and function) proceed normally in pebble mutant embryos, indicating that pebble is specifically required for the coordination of mitotic spindle and contractile ring functions. The pebble phenotype is also observed, but only with very low penetrance, during the early divisions of the germ line progenitors (the pole cells). alpha-Amanitin injection experiments indicate that these early pole cell divisions, the first cell divisions during embryogenesis, do not require zygotic gene expression. These divisions might therefore rely on maternally contributed pebble function. The maternal contribution from heterozygous mothers might be insufficient in rare cases for all the pole cell divisions.

REFERENCES

De Lozanne
A.
,
Spudich
J.
(
1987
).
Disruption of the Dictyostelium myosin heavy chain gene by homologous recombination.
Science
236
,
1086
1091
Edgar
B. A.
,
Kiehle
C. P.
,
Schubiger
G.
(
1986
).
Cell cycle control by the nucleo-cytoplasmic ratio in early Drosophila development.
Cell
44
,
365
372
Edgar
B. A.
,
Odell
G. M.
,
Schubiger
G.
(
1987
).
Cytoarchitecture and the patterning of fushi tarazu expression in the Drosophila blastoderm.
Genes Develop
1
,
1226
1237
Foe
V. E.
(
1989
).
Mitotic domains reveal early commitment of cells in Drosophila embryos.
Development
107
,
1
22
Foe
V. E.
,
Alberts
B. M.
(
1983
).
Studies of nuclear and cytoplasmic behaviour during the five mitotic cycles that precede gastrulation in Drosophila embryogenesis.
J. Cell Sci
61
,
31
70
Hay
B.
,
Ackermann
L.
,
Barbel
S.
,
Jan
L. Y.
,
Jan
Y. N.
(
1988
).
Identification of a component of Drosophila polar granules.
Development
103
,
625
640
Karess
R. E.
,
Chang
X.-J.
,
Edwards
K. A.
,
Kulkarni
S.
,
Aguilera
I.
,
Kiehart
D. P.
(
1991
).
The regulatory light chain of nonmuscle myosin is encoded by spaghetti-squash, a gene required for Cytokinesis in Drosophila.
Cell
65
,
1177
1189
Karr
T. L.
,
Alberts
B. M.
(
1986
).
Organization of the cytoskeleton in early Drosophila embryos.
J. Cell Biol
102
,
1494
1509
Kiehart
D. P.
,
Mabuchi
I.
,
Inoue
S.
(
1982
).
Evidence that myosin does not contribute to force production in chromosome movement.
J. Cell Biol
94
,
165
178
Kim-Ha
J.
,
Smith
J. L.
,
Macdonald
P. M.
(
1991
).
oskar mRNA is localized to the posterior pole of the Drosophila ocyte.
Cell
66
,
23
35
Lehner
C. F.
,
O'Farrell
P. H.
(
1989
).
Expression and function of Drosophila Cyclin A during embryonic cell cycle progression.
Cell
56
,
957
968
Lehner
C. F.
,
O'Farrell
P. H.
(
1990
).
The roles of Drosophila cyclins A and B in mitotic control.
Cell
61
,
535
547
Mabuchi
I.
,
Okuno
M.
(
1977
).
The effect of myosin antibody on the division of starfish blastomeres.
J. Cell Biol
74
,
251
263
Mitchison
T. J.
,
Sedat
J.
(
1983
).
Localization of antigenicdeterminants in whole Drosophila embryos.
Develop. Biol
99
,
261
264
Rabinowitz
M.
(
1941
).
Studies on the cytology and early embryology of the egg of Drosophila melanogaster.
J. Morphol
69
,
1
49
Rappaport
R.
(
1986
).
Establishment of the mechanism of cytokinesis in animal cells.
Int. Rev. Cytol
105
,
245
281
Schroeder
T.
(
1989
).
The contractile ring and furrowing in dividing cells.
Ann. N.Y. Acad. Sci
582
,
78
87
Schupbach
T.
,
Wieschaus
E.
(
1989
).
Female sterile mutations on the second chromosome of Drosophila melanogaster. I. Maternal effect mutations.
Genetics
121
,
101
117
Schweisguth
F.
,
Lepesant
J.-A.
,
Vincent
A.
) (
1990
).
The serendipity alpha gene encodes a membrane-associated protein required for the cellularization of the Drosophila embryo.
Genes Develop
4
,
922
931
Simpson
L.
,
Wieschaus
E.
(
1990
).
Zygotic activity of the nullo locus is required to stabilize the actin-myosin network during cellularization in Drosophila.
Development
110
,
851
863
Steinhilber
G.
,
Sproll
M. W.
,
Wolff
J. M.
,
Anderer
F. A.
(
1990
).
Highly specific characterization of tyrosine phosphoproteins in tumor cells based on monoclonal antibodies defined by conjugated phosphotyramine.
Anticancer Res
10
,
907
912
Turner
F. R.
,
Mahowald
A. P.
(
1976
).
Scanning electron microscopy of Drosophila embryogenesis. 1. The structure of the egg envelopes and the formation of the cellular blastoderm.
Develop. Biol
50
,
95
108
Wang
C.
,
Lehmann
R.
(
1991
).
Nanos is the localized posterior determinant in Drosophila.
Cell
66
,
637
647
Warn
R. M.
,
Robert-Nicoud
M.
(
1990
).
F-actin organization during the cellularization of the Drosophila embryo as revealed with a confocal laser scanning microscope.
J. Cell Sci
96
,
35
42
Warn
R. M.
,
Smith
L.
,
Warn
A.
(
1985
).
Three distinct distributions of F-actin occur during the divisions of polar surface caps to produce pole cells in Drosophila embryos.
J. Cell Biol
100
,
1010
1015
Whitfield
W. G. F.
,
González
C.
,
Sánchez-Herrero
E.
,
Glover
D. M.
(
1989
).
Transcripts of one of two Drosophila cyclin genes become localized in pole cells during embryogenesis.
Nature
338
,
337
340
Wieschaus
E.
,
Sweeton
D.
(
1988
).
Requirements for X-linked zygotic gene activity during cellularization of early Drosophila embryos.
Development
104
,
483
493
Young
P. E.
,
Pesacreta
T. C.
,
Kiehart
D. P.
(
1991
).
Dynamic changes in the distribution of cytoplasmic myosin during Drosophila embryogenesis.
Development
111
,
1
14
This content is only available via PDF.