Although actin filaments are known to be localized in the cortex of axons and in the growth cones of nerve cells, it is unclear how actin-containing structures are assembled during nerve growth. We have studied the formation of actin structures in growing neurites by microinjecting fluorescent phalloidin or actin into PC12 neuron-like cells to label endogenous actin filaments. Upon stimulation of neurite growth in cells microinjected with fluorescent phalloidin, little or no fluorescence was detected in nascent growth cones and adjacent neurites despite the presence of actin filaments in these regions, suggesting that actin filaments were primarily formed by de novo assembly rather than the transport and reorganization of pre-existing, phalloidin-labeled actin filaments. Time-lapse observations of the distribution of phalloidin-labeled actin filaments during neurite elongation confirmed that fluorescence associated with pre-existing neurite cortex spread out more slowly than the elongation of neurites. Furthermore, when a dark spot was photobleached with a laser microbeam along neurites of cells microinjected with either fluorescent phalloidin or actin, the spot showed no appreciable translocation during active neurite elongation. Taken together, these results suggest that de novo assembly of actin filaments plays a crucial role in the formation of growth cones and adjacent cortex in the distal region of neurites, but does not appear to require the anterograde or retrograde transport of cortical filaments, or the passive stretching of the proximal segment of the neurite cortex.

This content is only available via PDF.