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Combined heterogeneity in cell size and deformability promotes
cancer invasiveness
Asadullah‡, Sandeep Kumar*,‡,§, Neha Saxena, Madhurima Sarkar, Amlan Barai and Shamik Sen§

ABSTRACT
Phenotypic heterogeneity is increasingly acknowledged to confer
several advantages to cancer progression and drug resistance. Here,
we probe the collective importance of heterogeneity in cell size and
deformability in breast cancer invasion. A computational model of
invasion of a heterogeneous cell aggregate predicts that combined
heterogeneity in cell size and deformability enhances invasiveness of
thewhole population, with maximum invasiveness at intermediate cell-
cell adhesion. We then show that small cells of varying deformability, a
subpopulation predicted to be enriched at the invasive front, exhibit
considerable overlap with the biophysical properties of cancer stem
cells (CSCs). In MDA-MB-231 cells, these include CD44hi CD24−

mesenchymal CSCs, which are small and soft, and CD44hi CD24+

hybrid CSCs, which exhibit a wide range of size and deformability. We
validate our predictions by tracking the pattern of cell invasion from
spheroids implanted in three-dimensional collagen gels, wherein we
show temporal enrichment of CD44hi cells at the invasive front.
Collectively, our results illustrate the advantages imparted by
biophysical heterogeneity in enhancing cancer invasiveness.

This article has an associated First Person interview with the first
author of the paper.
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INTRODUCTION
Tumors are comprised of phenotypically distinct subpopulations,
with heterogeneity associated with higher tumor growth and poor
therapeutic efficiency (Lawson et al., 2018; Arozarena and
Wellbrock, 2019). Several factors contribute to phenotypic
heterogeneity, including genetic factors such as genomic instability
(Burrell et al., 2013), non-genetic factors such as cellular plasticity
(Brock et al., 2009), and bymicroenvironmental cues such as nutrient
availability. In addition, during epithelial-mesenchymal transition
(EMT), which plays a central role in cancer metastasis, epithelial cells
rarely undergo a complete transition to a mesenchymal state, thereby
giving rise to phenotypically distinct subpopulations (Pastushenko
et al., 2018; Pastushenko and Blanpain, 2019). EMT also leads to the

generation of tumor-initiating cells, also referred to as cancer stem
cells (CSCs) (Mani et al., 2008). Latest single-cell technologies have
proven to be very useful in assessing and implicating molecular-level
heterogeneity in tumor growth and relapse (Gan et al., 2018; Patel
et al., 2014). The co-existence of multiple stable subpopulations
within the same tumor may be indicative of cooperation between
individual subpopulations (Tabassum and Polyak, 2015). Indeed,
cooperation between phenotypically distinct subpopulations has been
shown to play a beneficial role in tumor growth, invasion and drug
resistance (Zhou et al., 2017). In the context of invasion, such
cooperation between poorly invasive melanoma cells and
proteolytically active melanoma cells drives collective invasion
(Chapman et al., 2014). Similarly, in luminal breast cancer cells,
lesser invasive CD44low follower cells invade collectively with
CD44hi leader cells (Yang et al., 2019).

Cell size and cell deformability represent two key biophysical
attributes of cells that have been shown to modulate cancer invasion
and metastasis (Wolf et al., 2013; Kumar et al., 2018b). Intuitively,
smaller cell size is expected to provide an invasion advantage not
only during migration through the stroma, but also during
transmigration through the endothelium. Studies have established
small size as a key feature of stem cells as well as CSCs (De Paiva
et al., 2006; Lia et al., 2015). In CSCs, the combination of small size
and phenotypic plasticity has been shown to enable fast migration in
aligned collagen matrices (Ray et al., 2017). In addition to smaller
cell size, increased cell deformability has been shown to promote
invasiveness in both cancer cell lines and patient-derived cells
(Swaminathan et al., 2011; Xu et al., 2012; Harada et al., 2014), and
is one of the key features of tumor-initiating CD44hi CD24low breast
CSCs (Al-Hajj et al., 2003; Sheridan et al., 2006) and drug-resistant
ovarian cancer cells (Kapoor et al., 2018), as well as cells migrating
in non-proteolytic fashion (Das et al., 2019). Strikingly, studies
have also demonstrated that more heterogeneous cellular
populations possess a higher propensity for secondary metastasis
(Cheung et al., 2016), suggesting that phenotypic heterogeneity
may play a key role in mediating metastasis. Nevertheless, the
extent of variation in cell size and cell deformability within these
heterogeneous cell clusters, and their relative contribution to cancer
invasiveness, remains obscure.

The relative importance of cell size and deformability in cancer
invasiveness may also depend on the extent of cell-cell adhesion,
which determines the mode of migration, i.e. single-cell migration
versus collective cell migration. Whereas epithelial cells possessing
high levels of E-cadherin exhibit collective migration,
mesenchymal cells with low or no E-cadherin exhibit single-cell
migration. EMT has long been considered as the key cellular
transformation for cancer metastasis (Dongre and Weinberg, 2019).
The process of EMT, originally thought to be a binary process, is
increasingly understood to represent a spectrum of states with
varying expression of epithelial/mesenchymal genes giving rise to
the hybrid epithelial/mesenchymal phenotype (Jolly et al., 2018;
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Liao and Yang, 2020). This hybrid phenotype has been observed in
circulating tumor cells (CTCs), which disseminate as tumor cell
clusters with intact cell-cell adhesions (Yu et al., 2013; Fabisiewicz
and Grzybowska, 2017). In addition to CTCs, the hybrid epithelial/
mesenchymal phenotype has been observed in multiple types of
cancers, with the hybrid subpopulation tending to localize at the
leading edge of primary tumors (Puram et al., 2017). However, the
extent to which the biophysical properties of this subpopulation
enables its enrichment at the invasive front has not been adequately
studied.
In this paper, using MCF-7 and MDA-MB-231 human breast

cancer cell lines, which vary in the extent of cell-cell adhesion, we
first document the extent of heterogeneity in cell size, deformability
and cell motility. We then probe the importance of this biophysical
heterogeneity on cancer invasiveness using a computational model
of cancer invasion. Our results suggest that combined heterogeneity
in cell size and deformability enhances the random scattering of a
tumor-mimicking cell cluster independent of the extent of cell-cell
adhesion, with comparable invasiveness of subpopulations of
different sizes and deformabilities. Although intermixing of
different subpopulations is observed even during directed cell
migration, our results predict smaller-sized cells of varying
deformability as one prominent subpopulation that gets enriched
at the invasive front. The phenotypic characteristics of this
subpopulation exhibit considerable overlap with the properties of
CD44hi-expressing CSCs in MDA-MB-231 cells. Finally, using
spheroid invasion experiments, we demonstrate the temporal
enrichment of CSCs at the invasive front.

RESULTS
Biophysical heterogeneity of breast cancer cell lines
Phenotypic heterogeneity was characterized by measuring
variability in cell-cell adhesion, cell size, cell speed and cell
deformability of MCF-7 and MDA-MB-231 breast cancer cells. In
comparison to strong E-cadherin localization at cell-cell junctions in
MCF-7 cells, E-cadherin levels and peripheral localization were
substantially reduced in MDA-MB-231 cells, which are more
mesenchymal in nature (Fig. 1A,B). Though the two cell lines
exhibited overlapping size distributions, the average size of MDA-
MB-231 cells was nearly twice that of MCF-7 cells (Fig. 1Ci). The
tracking of the size of individual cells over a 24 h period revealed
the presence of cells that exhibited a relatively unchanged size, as
well as cells that exhibited a large variation in size (Fig. 1Cii,Ciii;
Movie 1). The distribution of maximum change in cell size (with
respect to cell size at t=0 h) revealed significantly lesser variation in
the size of MDA-MB-231 cells compared to MCF-7 cells (Fig. 1D).
MDA-MB-231 cells were nearly twice as motile compared to that of
MCF-7 cells (Fig. 1E). However, no correlation between cell size
and motility was observed in both the cell types, with the values of
the correlation coefficients (rMCF and rMDA) being close to zero
(Fig. 1F). Further quantification of cell stiffness revealed that MDA-
MB-231 cells were marginally softer than MCF7 cells (Fig. 1G).
Together, these results suggest that highly invasive MDA-MB-231
cells tend to be larger, softer and more migratory compared to non-
invasive MCF-7 cells.
To check whether the observed functional-level heterogeneity is

also present at the transcript level, publicly available single-cell RNA-
seq datasets from breast cancer samples (GSE75688) (Chung et al.,
2017) were analyzed by performing single sample enrichment
analysis for stemness, EMT and cell biophysical characteristics
(refer to Materials and Methods). Although publicly available
genesets were used for calculating stemness and EMT scores,

characterization of cell mechanical properties using gene set
enrichment analysis (GSEA) was performed using a manually
defined BiophysicalGeneset comprising of regulators of cytoskeletal
dynamics, including actin, vimentin, actin crosslinking proteins,
myosin and Rho GTPases and their downstream effectors (refer to
Materials and Methods). Additionally, to gain insights into intratumor
and intertumor heterogeneity, enrichment scores were studied for
samples from individual patients, as well as for the entire dataset. This
analysis indeed revealed a wide heterogeneity in stemness, EMT and
BiophysicalGeneset scores from within tumor from the same patient,
as well as within the entire dataset (Fig. S1A-D). Next, to study the
correlation between biophysical characteristics and stemness/EMT,we
compared the enrichment score of BiophysicalGeneset with that of
stemness and EMT scores for individual cells. Interestingly, this
comparison showed a strong co-enrichment of BiophysicalGeneset
and stemness, as well as BiophysicalGeneset and EMT scores
(Fig. S1E,F). Though previous studies have shown a strong correlation
between stemness and EMT (Chung et al., 2017; Mani et al., 2008),
the reported relationship with biophysical characteristics is novel and
was not clear from previous studies. In line with the heterogeneity
observed in human breast cancer samples, a wide heterogeneity in
expression levels of genes regulating cellular biophysical properties
was observed in MCF7 and MDA-MB-231 cell lines (Fig. S2)
(Jonasson et al., 2019; Birts et al., 2020). Comparatively, less
heterogeneity was observed in EMT and stemness markers in cell line
datasets. Collectively, these results suggest that breast cancer cells
exhibit heterogeneity at the phenotypical level, as well as in gene
expression patterns.

Combined heterogeneity in cell size and cell deformability
enhances cancer invasiveness
To probe the importance of phenotypic heterogeneity in cancer
invasion, we used our recently developed cellular Potts model
(CPM)-based formalism, which allows us to account for multiple
factors, including cell size and deformability, cell-cell adhesion,
extracellular matrix (ECM) density and ECM remodeling. The
simulation framework consists of three types of pixels representing
the cell (pink), ECM fibers (blue lines) and the interstitial fluid
(white) (Fig. 2A; see Materials and Methods for details) (Kumar
et al., 2016b). At the start of simulations (t=0), the cell aggregate is
positioned at the center of the simulation grid. Although ECM fibers
sterically hinder cell migration, the lateral invasion of cells is
mediated by cell secreted matrix metalloproteinases (MMPs) which
degrade the fibers and create space for migration. Simulations were
performed for the case of a homogeneous cell aggregate and a
heterogeneous cell aggregate. For the heterogeneous aggregate, size
(or target cell area) and stiffness (or area constraint) of individual
cells within the aggregate were assumed to follow Gaussian
distributions (Fig. 2B). Furthermore, cells of varying sizes and
stiffness were distributed such that therewas no bias in their position
within the cluster (Fig. S3A). Cell size and cell stiffness of the
homogeneous cell aggregate were set to the mean cell size ð �AÞ and
mean stiffness ðlaÞ of the heterogeneous cell aggregate.

Spatiotemporal evolution of the system is based on random
movement of individual pixels subject to transition probabilities
using the Monte Carlo method, and is based on the total system
energy (Eqn 1). One of the major factors contributing to the total
energy of the system is dependent on the nature of adhesive
interactions between the three different types of pixels in our
simulations (cell-cell, cell-matrix and cell-fluid; first term in Eqn 1;
Fig. S3B). Although cell-matrix (Jcm) and cell-fluid (Jcf ) adhesion
energies were held constant (i.e. Jcm=16, Jcf =32 in units of KBT/L),
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cell-cell adhesion energies (Jcc) were varied to mimic different
extents of cell-cell adhesion to model the invasive behavior of both
epithelial-like cells, such as MCF-7 cells, as well as mesenchymal-
like cells, such as MDA-MB-231 cells. Whereas a choice of Jcc=1
led to collective migration mimicking the behavior of MCF-7 cells,
a choice of Jcc=40 led to cell scattering mimicking the behavior of
MDA-MB-231 cells (Fig. 2C; Movies 2-4). In comparison, Jcc=16
corresponds to cells with intermediate cell-cell adhesion in which
both single cells and cell clusters (a cluster corresponds to a group of
cells in contact with each other) were observed. The second term
contributing to the total system energy is associated with deviations
in the sizes of individual cells (Fig. S3C) from their target sizes
(Fig. 2B).

The invasiveness of individual cells was quantified by measuring
the total distance (d) traveled by a given cell, as well as the net end-to-
end distance (D) traveled by the cell between its initial and final
positions. Both d and D were measured based on the position of the
cell centroid. Although no difference was observed in the population-
averaged total distance ð�dÞ traveled by cells (Fig. 2D, inset),
independent of Jcc, heterogeneity in cell size and deformability led to
an increase in population-averaged net translocation ð�DÞ compared to
the homogeneous case (Fig. 2D; Fig. S3D). Interestingly, the
invasiveness of cells possessing heterogeneity only in size (i.e.
stiffness of all cells = la ) or heterogeneity only in stiffness (i.e. size of
all cells = �A ) were less invasive compared to cells possessing
combined heterogeneity in cell size and deformability (Fig. S3E).

Fig. 1. Phenotypic heterogeneity of
breast cancer cells. (A) Representative
images of MCF-7 and MDA-MB-231 cells
stained for E-cadherin. White dotted lines
indicate cell boundaries of MDA-MB-231
cells. Insets show close ups of cell-cell
junctions. (B) Line intensities of E-cadherin
across cell-cell contacts in MCF-7 andMDA-
MB-231 cells, and quantification of
membrane to cytoplasmic E-cadherin levels
(i.e. EM/EC) (n>40 cells per condition pooled
from N=3 independent experiments).
(Ci) Distribution of cell size of MCF-7 and
MDA-MB-231 cells (n>200 cells per
condition pooled from N=3 independent
experiments). (Cii,Ciii) Representative time-
snaps of three MCF-7 and MDA-MB-231
cells along with variation in their spread area
over 24 h. (D) Distribution of maximum
change in cell size over 24 h (n>100 cells per
condition pooled from N=3 independent
experiments). (E) Representative single cell
trajectories of MCF-7 and MDA-MB-231
cells, and distribution of random cell motility
(n>100 cells per condition pooled from N=3
independent experiments). (F) Plot of cell
speed versus cell size in MCF-7 and MDA-
MB-231 cells (n>100 cells per cell type
pooled fromN=3 independent experiments).
rMCF and rMDA represent the values of
Pearson correlation coefficient between cell
size and cell speed in MCF-7 and MDA-MB-
231 cells, respectively. (Gi) Schematic for
probing cortical cell stiffness with atomic
force microscope (AFM). Cells were
indented with a soft pyramidal probe.
Cortical stiffness was estimated by fitting the
raw force-indentation curves with the Hertz
equation. (Gii) Distribution of cell stiffness of
MCF-7 and MDA-MB-231 cells (n>100 cells
per condition pooled from N=3 independent
experiments). *P<0.05, **P<0.01,
***P<0.001 (unpaired, two-tailed Student’s
t-test). In box-and-whisker plots, the box
represents the 25–75th percentiles, and the
median (line) and mean (small square) is
indicated. The whiskers show 1.5× of
interquartile range (IQR). Outliers are
indicated. a.u., arbitrary units.

3

RESEARCH ARTICLE Journal of Cell Science (2021) 134, jcs250225. doi:10.1242/jcs.250225

Jo
u
rn
al

o
f
Ce

ll
Sc
ie
n
ce

https://jcs.biologists.org/lookup/doi/10.1242/jcs.250225.supplemental
http://jcs.biologists.org/lookup/doi/10.1242/jcs.250225.supplemental
http://jcs.biologists.org/lookup/doi/10.1242/jcs.250225.supplemental
http://jcs.biologists.org/lookup/doi/10.1242/jcs.250225.supplemental


Fig. 2. Effect of phenotypic heterogeneity on cancer invasiveness. (A) Schematic of model. Cancer invasion was simulated by studying scattering of a cluster
of 69 cells (pink pixels) positioned at the center of a two-dimensional space mimicking the ECM 1×1 mm2 in size (shown in inset). The ECM consisted of 600
randomly positioned 2 µm thick ECM fibers (blue lines) 30-40 µm in length. Pixels that neither belong to a cell nor to an ECM fiber were considered as fluid
pixels. ECM degradation is mediated by MMP molecules secreted by the cells, which diffuse into the surrounding ECM and degrade ECM fibers (see Materials
andMethods for details). When an ‘ECM pixel’ is degraded, the pixel type is changed from ‘ECM pixel’ to ‘fluid pixel’. (B) Cell phenotypewas varied by varying cell
size (A) and cell deformability (or area constraint, λ), both of which were approximated as normal distributions. Sizes of individual cells within the cluster were
assigned from a normal distribution with mean cell size �A ¼ 517:5 mm2 and s.d. σA = 86.1 μm2. Cell deformabilities were assigned from a normal distribution with
mean deformability �la ¼ 1E=L4 and s.d. sl ¼ 0:12E=L4. (C) Time-dependent invasion of a cell cluster for three different values of cell-cell adhesion energy
(Jcc=1, 16, 40), with Jcc=1 corresponding to collective cell invasion and Jcc=40 corresponding to single cell invasion. Simulations were performed for
homogeneous cell cluster, wherein each cell is 517.5 μm2 in size and λa = 1 E/L4 in deformability, and for heterogeneous cell cluster, wherein cell size and
deformability were drawn from the distribution in B. Each simulation was performed for 2010 MCS, with 22 independent sets of simulations performed per
condition. (D) Cell invasion was quantified bymeasuring the total distance (d ) and the end-to-end distance (D) traveled by a given cell in 1800MCS.Quantification
of population-averaged cell translocation ð�DÞ for homogeneous and heterogeneous cell clusters for three different values of Jcc. Inset shows �d for homogeneous
and heterogeneous cell clusters. Data aremean±s.e.m. (E) Quantification of translocation for different subpopulations of the heterogeneous cluster. Based on cell
size and λ, cells were clustered into small and soft cell, small and stiff cells, cells with ICSD, large and soft cells, and large and stiff cells (see Materials and
Methods for details). In box-and-whisker plots, the box represents the 25–75th percentiles, and the median (line) and mean (small square) is indicated. The
whiskers show 1.5× of interquartile range (IQR). Outliers are indicated. (F) Schematic of tSNE embedding of simulation data. (G) tSNE-based two-dimensional-
embedding of simulation data based on cell size, deformability (λ), net translocation (D) and total distance traveled (d ). Red regions represents cells with high D.
Blue regions represent cells with high d. *P<0.05, ns, not significant (unpaired, two-tailed t-test).
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To test whether higher �D of heterogeneous population is due to
increased motility of one particular subpopulation, the population
was divided into five subgroups depending upon their size and
stiffness. These included cells of intermediate size and deformability
(ICSD), small and soft cells, small and stiff cells, large and soft cells
and large and stiff cells. ICSD cells correspond to cells possessing
size and stiffness within 1 s.d. of the mean cell size and mean
deformability of the population (see Materials and Methods).
Whereas ‘small cells’/‘large cells’ correspond to cells smaller/larger
than the size of ICSD cells, ‘soft cells’/‘stiff cells’ correspond to cells
softer/stiffer than ICSD cells. In spite of considerable variation in the
magnitude of translocation within each subpopulation, negligible
differences were observed in the average translocation of the five
subpopulations (Fig. 2E). As these observations were based on
population averages, invasiveness behavior and its correlation with
cell/size and deformability at a single-cell level remains obscure.
Studying these aspects at the single-cell level becomes more
important in this study due to intrapopulation heterogeneity.
Therefore, to further probe the association between higher
invasiveness and cell size/deformability at the single cell level,
t-distributed stochastic neighbor embedding (tSNE)-based two-
dimensional-embedding of all cells (from 22 independent
simulations) was performed (Fig. 2F, Materials and Methods).
Overlaying these two-dimensional projections with cell size, d,D and
λ for individual cells revealed that high translocation (D>400 μm)
was exhibited by cells of varying sizes and deformabilities (Fig. 2G,
red regions). Even though the majority of the cells that showed higher
d were smaller in size (Fig. 2G, blue regions), no correlation was
observed with D, suggesting that decrease in cell size may increase
motility but not invasiveness. Collectively, these in silico studies
predict that heterogeneity in cell size and deformability can promote
cancer invasiveness independent of cell-cell adhesion.

Chemotaxis is fastest at intermediate cell-cell adhesion
Though the above simulations revealed a synergistic effect of
heterogeneity in cell size and deformability on invasiveness, these
results may vary in the presence of a directional cue, which is relevant
in vivo. Therefore, simulations were performed wherein directional
migration of the heterogeneous cell aggregate was tracked in the
presence of a stable linear chemical gradient (Fig. 3A). The efficiency
of chemotaxis was modulated by varying the strength of chemotaxis
(μ; seeMaterials andMethods). As effective chemotaxis was observed
for μ>1000 (Fig. S4), simulations were performed for μ=2000 and
μ=5000, with an increase in μ leading to faster directed migration
(Movies 5,6) (Kumar et al., 2018b). Under these conditions, cells were
found to invade in a collective manner independent of Jcc, with
negligible scattering observed even at Jcc=40 (Fig. 3B). Quantification
of t�, the time at which the first cell touches the right boundary of the
lattice in a given simulation, was found to decrease with Jcc (Fig. 3C).
Comparison of �D and �d at tmin, i.e., lowest t

� across all 22 simulations,
revealed the highest translocation at intermediate cell-cell adhesion
(Jcc=16) and highest persistence (<D f d>) for Jcc=16 and Jcc=40
(Fig. 3D). In line with this, cellular level comparison for μ=5000
revealed that cells that moved highest within tmin (i.e. highest dtmin ), and
also showed highest translocation, exhibited awide variation in cell size
andwere ofmixed deformabilities (Fig. 3E, red region). Additionally, at
moderate and low cell-cell adhesion (i.e. JCC∈{16,40}), there was a
subpopulation that exhibited very high D but moderate d (blue region);
a major fraction of cells in this subpopulation were large in size (blue
arrows) and of mixed deformabilities. Simulations performed with
lower chemotaxis strength (i.e. μ=2000) showed a similar trend to that
of μ=5000. Together, these analyses implicate intermediate cell-cell

adhesion in promoting invasion efficiency of cells in the presence of
directional cues.

Initial position and intermixing dictate enrichment of
specific subpopulations at the invasive front
To further understand how heterogeneity in cell size and
deformability imparts high invasiveness to invading populations,
the distance from the right boundary at t ¼ t�, i.e. δ, was compared
across cells of varying sizes and deformabilities (Fig. 4A). For
μ=5000, population averaged δ or �d was comparable for all the three
Jcc values. However, for μ=2000, �d was lowest for Jcc=1, suggesting
that at moderate chemotactic strengths high cell-cell adhesion enables
collective invasion of the whole population (Fig. 4B). As before,
invasiveness of the population was highest, i.e., �d was lowest, for the
case of combined heterogeneity in cell size and deformability instead
of heterogeneity in either cell size or in deformability (Fig. S5A).

To probe whether invading fronts were enriched in cells of
particular sizes/deformabilities, the distribution of cell size and
deformability was determined for cells that reached within 50 μm
from the right edge, i.e., δ≤50 μm (Fig. 4C). Although 40–50% of
cells at the invasive front were of intermediate size and deformability,
enrichment analysis, i.e. comparison of the proportion of cells of a
given subpopulation at the invasive front in comparison to that in the
entire population, provided interesting insight. Specifically, small
cells of varying deformabilities, small and intermediate-sized soft
cells, and intermediately stiff cells of varying cell sizes represent three
heterogeneous subpopulations that were enriched at one or more
values of Jcc (Fig. 4D).

To probe the possible mechanism(s) mediating enrichment, for all
cells within the invasive front, the positions of cells at t ¼ t� were
plotted as a function of their position at t=50 Monte Carlo Step
(MCS) with different colors and shapes depicting different
subpopulations (Fig. 4E,F). As the cells were positioned in a
rectangular grid-like fashion at t=0 MCS (Fig. S3A), a time point of
t=50 MCS was chosen to allow for some initial intermixing of the
cells. For Jcc=1, cells that ended up at the invasive front at t ¼ t�, were
situated at distances δi (distance of ith cell from right boundary)
ranging from 400 to 600 µm at t=50 MCS. The distance 400 µm
corresponds to positions at the front of the cell aggregate closest to the
right boundary, whereas 600 µm corresponds to positions at the
back of the cell aggregate farthest from the right boundary. In
comparison, the initial distance ranged from 400 to 500 µm for
Jcc=16 and Jcc=40. Consistent with these observations, the average
number of neighbor changes of individual cells was highest in the
case of Jcc=1 and lowest in the case of Jcc=40 (Fig. S5B). In
combination, these results suggest that the initial position of cells
and intermixing represent two mechanisms mediating enrichment,
with the initial position playing a more dominant role at
intermediate and low cell-cell adhesion, and intermixing playing
a prominent role when cell-cell adhesions are intact. Interestingly,
for Jcc=1, where enrichment of cells from the rear of the cell
aggregate was observed, the common feature of these cells was that
they were either soft or of intermediate stiffness (Fig. 4F).

Comparison of biophysical properties of simulation
predicted invasive sub-population with CSCs
The above analysis has helped us identify small cells of varying
deformabilities, soft cells of varying cell sizes, and intermediately
stiff cells of varying cell sizes, as three heterogeneous subpopulations
that are enriched at the invasive front depending on Jcc. To further
probe which of these subpopulations is maximally invasive,
simulations were performed using heterogeneous populations (A, B
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and C), wherein cell size/deformability of these populations were
drawn from uniform distributions covering the same range of cell
size/deformability as that of the above three subpopulations. In
addition, a population D was generated by combining populations A,
B and C (Fig. 5A). Although t� values were comparable for the four
populations, for all values of Jcc, lowest �d was observed for
population A, i.e. small cells of varying deformabilities (Fig. 5B;
Movie 7). However, within this population, no dependence of δ on
deformability was observed (Fig. 5C).
To compare and contrast the biophysical properties of population

A with that of CSCs, a biophysical characterization of CD44hi

CD24− mesenchymal CSCs (herein referred to as mCSCs) and
CD44hi CD24+ hybrid CSCs (herein referred to as hCSCs) was

undertaken (Fig. 5D,E; Fig. S6A). MDA-MB-231 cells were found
to contain ∼60% mCSCs and ∼6% hCSCs (Fig. S6A). Although
mCSCs were smaller and softer compared to the parental
population, hCSCs exhibited size and stiffness values comparable
to the parental population (Fig. 5F,G). In addition to highlighting
differences between the biophysical properties of mCSCs and
hCSCs, our results are indicative of an overlap in the biophysical
properties of the maximally invasive population A predicted by our
simulations with that of CSCs.

CSCs are enriched at the invasive front in a temporal manner
To experimentally determine the spatial position of CSCs during
invasion, MDA-MB-231 spheroids were implanted in three-

Fig. 3. Effect of phenotypic heterogeneity
on chemotacticmigration. (A) Schematic of
chemotaxis. Directed cell migration is driven
by the presence of a stable chemotactic
gradient with maximum chemokine
concentration at the right edge of the two-
dimensional ECM. (B) Representative time
snaps of the migration of cancer cells under
the influence of the chemotactic field for
different values of Jcc. t� corresponds
to the time when the first cell reached
the right boundary in a given simulation.
(C) Quantification of t� for different values of
Jcc for two different values of chemotactic
strength (μ), a measure of the ability of cancer
cells to sense the chemokine and exhibit
chemotaxis. tmin corresponds to the
lowest value of t� across all simulations.
(D) Quantification (mean±s.e.m.) of (D,d) and
persistence (D/d) at tmin for different values of
Jcc and different values of μ. (E) tSNE-based
two-dimensional-embedding of simulation
data based on cell size, λ,D (at tmin), and d (at
tmin). Red regions represents cells with highD
and d. Blue regions represent cells with high
D but moderate d. Blue arrows highlight large
cells within the blue regions.
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dimensional collagen gels and the spatiotemporal positioning of
CSCs was assessed. Although the proportion of mCSCs within
the spheroids was nearly identical to that in MDA-MB-231 cells
cultured in two-dimensional collagen-coated substrates, the
proportion of hCSCs was higher (Fig. S6B,C). The temporal
pattern of cell scattering was quantified 1, 3 and 5 days after
implantation (day 0) (Fig. 6A). Spheroids were implanted in
1.5 mg/ml collagen gels with an average pore size of ∼2 μm
(Fig. 6B). To probe the initial spatial distribution of CSCs and non-
CSCs (nCSCs) within the spheroid, cells were stained for CD44,
F-actin and DAPI (Fig. 6C). Quantification of integrated CD44
and F-actin intensity as a function of radial position from the
spheroid center revealed a uniform distribution, suggesting that

CSCs (i.e. CD44hi cells) were randomly positioned within the
spheroid (Fig. 6D). Temporal tracking of spheroids revealed an
increase in spheroid size, as well as an outward scattering of cells
from the spheroid core (Fig. 6E).

To probe for the possible enrichment of CSCs at the invasive
front, the spheroid core of day 5 spheroids were divided into seven
zones, and the average integrated CD44 intensity was computed for
each zone (Fig. 6F). Zones 0-2 were chosen such that they spanned
the area occupied by day 0 spheroids. Plots of integrated CD44,
intensity normalized with respect to the average CD44 intensity in
the innermost zone (i.e. zone 0) at day 1, day 3 and day 5, revealed
time-dependent enrichment of CD44hi cells at the outermost zone
(Fig. 6G). A threefold enrichment in the outermost zone (i.e. zone 4)

Fig. 4. Spatial mapping of phenotypic
heterogeneity at the invasive front.
(A) Spatial distribution of phenotypically distinct
subpopulations at t ¼ t� for Jcc=1 and μ=5000.
The position of each cell was quantified by
measuring the distance (δ) from the right edge
of the two-dimensional ECM. (B) Plot (mean±
s.e.m.) of �d for the entire population for different
values of Jcc. (C) Plot of cell size versus cell
deformability for cells at the invasive front
(i.e. δ≤50 μm at t ¼ t�). Grey dotted lines drawn
at (�A+ sA )/(�l+ sl) intervals allowed us to
segregate cells into nine different groups based
on size and deformability. (D) Percentage
enrichment of cells of each subpopulation at the
invasive front relative to the whole population.
(E) For cells at the invasive front, a plot of the
final position of cells (i.e. δi at t�) versus their
initial position (i.e. δi at t=50 MCS) for
different values of Jcc. (F) Initial position of cells
(i.e. δi at t=50MCS) for the nine different groups
of cells segregated on the basis of size and
deformability. For ease of visualization, each
cell was color coded based on its size and
deformability (green top-pointed triangles,
small and soft cells; purple circles, small cells
with intermediate deformability; pink squares,
small and stiff cells; dark blue left-pointed
triangles, soft cells of intermediate size; red
circles, intermediate stiff cells of intermediate
size; pink bottom-pointed triangles, stiff cells of
intermediate size; light blue pentagons, large
and soft cells; green hexagons, large cells of
intermediate deformability; purple right-pointed
triangles, large and stiff cells).
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at day 1 increased to fivefold enrichment at day 3 in zone 5, and
remained unchanged thereafter at day 5 in the outermost zone 6.
To probe the mechanism underlying the enrichment of CD44hi

cells at the invasive front, interconversion experiments were
performed wherein mCSCs, hCSCs and nCSCs (CD44−/low cells)
were isolated from parental MDA-MB-231 cells by fluorescence-
activated cell sorting (FACS) and individually expanded up to a
duration of 48 h (Fig. 7A). FACS analysis of the individually grown
cultures allowed us to determine the rates of interconversion in these
three subpopulations. Although both nCSCs and hCSCs converted
to mCSCs, mCSCs mostly exhibited symmetric division (Fig. 7B).
Collectively, these results suggest that enrichment of CD44hi cells at
the invasive front may be partly associated with transdifferentiation
of nCSCs into mCSCs.

DISCUSSION
In this paper, we began by mapping biomechanical heterogeneity in
breast cancer cell lines by measuring cell size and cell deformability
of two cell types, which vary in the extent of cell-cell adhesion.
Although both cell types exhibit overlapping size and deformability
distributions, MDA-MB-231 cells are on an average larger in size and
more motile compared to MCF-7 cells. Our simulations predict that
cancer invasiveness is maximumwhen heterogeneity in both cell size
and cell deformability is present. Although a directional cue may
drive collective invasion of the entire cell aggregate independent of
the extent of cell-cell adhesion, invasiveness is most efficient at
intermediate cell-cell adhesion. Analysis of subpopulations present at
the invasive front suggests that small cells of varying deformabilities
represent the most invasive subpopulation and may correspond to a

Fig. 5. Small cells of varying
deformabilities may correspond to CSCs.
(A) Distribution of cell size and deformability
for four distinct populations: small cells of
varying deformabilities (A), soft cells of
varying cell sizes (B), intermediately stiff
cells of varying cell sizes (C), and a
combination of populations A, B and C, i.e.
population D. (B) Quantification (mean±
s.e.m.) of t� and �d for populations A to D.
(C) Dependence of δ on deformability for
population A. (D) FACS expression profile of
CD44andCD24 inMDA-MB-231 cells.Q1,Q2,
Q3 and Q4 represent quadrant gating of FACS.
Inset boxes correspond to gating of FACS to get
pure populations of mCSCs and hCSCs.
(E) Representative phase contrast images of
CD44hi CD24− mCSCs and CD44hi CD24+

hCSCs. Scale bar: 50 µm. (F) Cell size
distribution of parental, mCSCs and hCSCs
after 12 h culture on collagen-coated glass
coverslips (n>190 cells per condition pooled
from N=3 independent experiments).
(G) Cell stiffness distribution of parental,
mCSCs and hCSCs after 12 h culture on
collagen-coated glass coverslips (n≥180
cells per condition pooled from N=3
independent experiments). ***P<0.001
(one-way ANOVA/Fisher test). In box-and-
whisker plots, the box represents the
25–75th percentiles, and the median (line)
and mean (small square) is indicated. The
whiskers show 1.5× of interquartile range
(IQR). Outliers are indicated.
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subpopulation of CD44hi CSCs. In addition to highlighting the
potential role of combined heterogeneity in cell size and
deformability in hastening cancer invasion, our results suggest
biophysical heterogeneity drives invasiveness (Fig. 7C). Although
our simulations were performed keeping the extent of cell-cell
adhesion fixed for a given simulation, variable extent of cell-cell
adhesion, which is likely to be more relevant in vivo, is expected to
generate a combination of single cells and cell clusters at the
invasive front.
Our results predict that heterogeneity in cell size alone or

deformability alone is not sufficient to positively influence cancer
invasiveness; instead, heterogeneity in both cell size and
deformability is required. Combined heterogeneity may promote
invasiveness by allowing cells to continuously reposition themselves
within the cell cluster. Such internal reorganization is particularly
evident during collective migration with intact cell-cell adhesions
(i.e. Jcc=1), wherein cells cover the largest distances to reach the
boundary and also undergomaximum neighbor changes. This type of
re-arrangement enabled the enrichment of cells from the tumor
interior, with these cells being softer than the bulk population. In
contrast, at moderate and low cell-cell adhesion, as cells are more
prone to scattering, the scope for re-arrangementmay be lesser. Under

these conditions, initial position of cells is likely to play a more
important role in determining their presence at the invasive front.
Highest population invasiveness observed for Jcc=16 may be
attributed to the synergistic effects of intermixing and initial
positioning. Our observation of fastest chemotaxis observed at
intermediate cell-cell adhesion is consistent with the notion that
groups of cells exhibit better gradient-sensing via collective guidance
through the regulation of contact inhibition of locomotion (CIL)
(Camley et al., 2016).

In skin andmammary primary tumors, screening of a large panel of
cell surface markers identified different tumour subpopulations
exhibiting different extents of EMT, with complete EMT requiring
cells to transit through multiple intermediate hybrid states
(Pastushenko et al., 2018). The hybrid epithelial/mesenchymal state
is associated with higher tumor initiating potential, increased
metastasis and chemoresistance (Grosse-Wilde et al., 2015; Biddle
et al., 2016; Navas et al., 2020). In breast cancer cells, although
CD44hi CD24− CSCs are mesenchymal in nature, ALDH+ CSCs,
as well as CD44hi CD24+ CSCs, exhibit a hybrid epithelial/
mesenchymal phenotype (Liu et al., 2014; Grosse-Wilde et al., 2015).
In our simulations, Jcc=16may correspond to this hybrid epithelial/
mesenchymal state in which both single cells and cell clusters

Fig. 6. Temporal enrichment of CSCs at the
invasive front. (A) Schematic of the spheroid
invasion assay. Single spheroids are implanted
into three-dimensional collagen gels and their
invasion tracked over a period of 6 days.
(B) Representative cryo FEG-SEM image of
1.5 mg/ml collagen gel. (C) Representative
image of a spheroid stained for CD44, phalloidin
(for visualizing the F-actin cytoskeleton) and
Hoechst 33342 for imaging nuclei. (D) Radial
distribution of CD44 and F-actin intensity in cells
within the spheroid at day 0. (E) Representative
images of spheroids at days 1, 3 and 5,
visualized by CD44 staining. (F) Segregation of
invasive area of day 5 spheroids into seven
zones. Zones 0, 1 and 2 were contained within
the area encompassing day 0 spheroids.
(G) Temporal zone-wise distribution of
integrated CD44 intensity normalized with
respect to CD44 intensity of the innermost zone
(i.e. zone 0) (mean±s.e.m.; n>40 cells per zone
per time point pooled from N=2 spheroids).
***P<0.001 (one-way ANOVA/Fisher test for
parametric data and Mann–Whitney test for
non-parametric data). a.u., arbitrary units.
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(i.e. groups of cells with intact cell-cell contacts) were observed. Cells
of intermediate deformability, predicted by our simulations to be
enriched at the invasive front for Jcc=16, may correspond to a subset
of the CD44hi CD24+ hCSCs. Although nCSCs gave rise to
predominantly mCSCs in our experiments, conversion of nCSCs to a
CD44hi CD24+ drug tolerant state in the presence of the
chemotherapeutic drug docetaxel highlights the importance of
stress-induced phenotypic plasticity (Goldman et al., 2015). The
extent to which phenotypic plasticity is influenced by physical
stresses felt by the cell nucleus during three-dimensional migration
remains to be explored (Mukherjee et al., 2020).
A correlation between smaller cell size and stemness has been

speculated, both in normal and diseased contexts (Lia et al., 2015).
Consistent with this notion, compared to larger PC3 pancreatic cancer
cells, smaller-sized cells were found to possess more CSC-like
characteristics, including clonogenic and tumorigenic properties
(Li et al., 2008). Similarly, spheres generated by culturing A431
epidermoid cancer cells under non-adherent conditions were enriched
with podoplanin+ small cells with increased tumorigenic potential
(Bortolomai et al., 2010). In SUM149 inflammatory breast cancer
cells, ALDH+ CSCs have been shown to be softer compared to the
parental population (Chen et al., 2019). Here, we show that in MDA-
MB-231 cells, the two CSC subpopulations differ considerably in
their size and deformability. Although CD44hi CD24− mCSCs were
significantly smaller and softer than parental cells, similar to the above
studies, CD44hiCD24+ hCSCs exhibited awide variation in their size
and stiffness. Interconversion experiments suggest that although both
nCSCs (CD44−/low cells) and hCSCs convert primarily to mCSCs,
mCSCs exhibit symmetric division. This may partly explain the
enrichment of CD44hi cells at the invasive front. As mCSCs represent
the majority fraction of CD44hi cells, it is likely that the majority of the
CD44hi cells at the spheroid invasive front are mCSCs. In line with
this, a computational study predicted that EMT-inducing factors, such
as TGFβ, secreted by stromal cells can give rise to the spatial
segregation of different CSC subsets with mCSCs localized at the

migration front (Bocci et al., 2019b). However, whether or not such
spatial segregation of CSCs also occurs in cell types with moderate or
strong cell-cell adhesion remains to be explored.

Using computational modeling, we have previously shown
that, in addition to the proportion of CSCs, the extent of their
spatial scattering also influences tumor growth (Kumar et al.,
2016a). In our spheroid invasion assays, CSCs and nCSCs were
randomly localized at day 0. However, within 24 h, enrichment of
CD44hi cells in the outermost zone of the spheroids was clearly
observed, suggesting that CSCs serve as leader cells. This is in
line with previous reports in primary human breast cancers
wherein CD44hiCD24−mesenchymal cells localized at the tumor
invasive front, and ALDH+ cells were found in the tumor interior
(Liu et al., 2014). Although similar localization of CD44hi cells at
the invasive front was observed during the collective invasion of
luminal breast cancer cells, these cells were found to exhibit a
hybrid epithelial/mesenchymal gene signature (Yang et al.,
2019). Although Notch signaling is known to induce EMT via
its ligands Delta and Jagged, EMT induction through Jagged
gives rise to clusters of hybrid epithelial/mesenchymal cells
(Boareto et al., 2016). The proportion of these hybrid epithelial/
mesenchymal cells and the size of the cell clusters has been
predicted to depend on the rate at which cells undergo EMT and
cell-cell adhesion (Bocci et al., 2019a). This model can
successfully reproduce the typical cluster size distributions
observed in CTCs isolated from patient blood.

In conclusion, in this study we have established the advantage of
phenotypic heterogeneity in breast cancer invasion. Future
experiments taking cell cycle stage into account can help us assess
the contribution of cell cycle heterogeneity to our measurements of
biophysical heterogeneity. Our multiscale stochastic computational
model recapitulating experimental observations predicts a potential
role of combined heterogeneity in cell size and deformability in
promoting cancer invasion, with gradual enrichment of small cells at
the invasive front, which may experimentally correspond to CSCs.

Fig. 7. Interconversion between CSCs and
proposed model of invasion by a
phenotypically heterogeneous tumor.
(A) Experimental setup for probing
interconversion between different CSC
subpopulations. nCSCs, mCSCs and hCSCs
were isolated from MDA-MB-231 cells using
FACS and then expanded separately. After 24
and 48 h, the individual cell fractions were re-
analyzed using FACS to assess the relative
proportions of CSCs in each cell fraction.
(B) Relative proportion of nCSCs, mCSCs and
hCSCs in cell fractions obtained by expanding
nCSCs, mCSCs and hCSCs for 24 and 48 h
(N=3 independent experiments; data are
mean±s.e.m.) Insets show pictorial
representations of the compositions of the cell
fractions after 48 h. (C) Proposed model of
invasion by a tumor comprising cells of varying
size and deformability. The relative proportions
of phenotypically distinct subpopulations at
the invasive front is dependent on the extent of
cell-cell adhesion.
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Future studies focused on probing interactions between the
different subpopulations may provide us with strategies to inhibit
heterogeneity-driven cancer invasion.

MATERIALS AND METHODS
Experimental methods
MCF-7 and MDA-MB-231 breast cancer cell lines were obtained from
National Center for Cell Science (Pune, India) and cultured in high glucose
Dulbecco’s modified Eagle medium (DMEM, Invitrogen, AL007A)
containing 10% fetal bovine serum (FBS, HiMedia, RM9952),
maintained at 37°C at 5% CO2 humidified atmosphere, and passaged
using 0.25% trypsin-EDTA (HiMedia, TCL099). For experiments, cells
were cultured for 24 h on glass coverslips coated with rat tail collagen I
(Sigma-Aldrich, C3867) at a concentration of 25 μg/ml. For E-cadherin
staining, cells were plated sparsely on collagen-coated glass coverslips.
After 72 h, cells were fixed, permeabilized with 0.5% Triton-X 100 (Sisco
Research Laboratories, 64518) and stained with anti-mouse E-cadherin
antibody (Cell Signal Technology, 14472, 1:400) overnight at 4°C. Next
day, after washing, cells were incubated with goat-anti-mouse IgG Alexa
Fluor 555 (Invitrogen, A21422, 1:1000) for 2 h at room temperature. After
staining nuclei with Hoechst 33342 (Thermo Fisher Scientific, H3570),
images were captured using an Olympus IX81 inverted microscope at 40×
magnification. Quantification of E-cadherin intensity was performed using
Fiji Image J software by tracking the line intensities across the cell edges and
quantifying the ratio of membrane to cytoplasmic E-cadherin intensity.

For cell size measurement, after 24 h of culture on collagen-coated glass
coverslips, cells were imaged at 10× magnification using an inverted
microscope (Olympus IX71). Cell area was quantified using ImageJ
software by manually outlining cells. For tracking temporal evolution of cell
size after 24 h culture, cells were imaged every 10 mins over a duration of
24 h (Zeiss Spinning DiskMicroscope). The samemovies were analyzed for
measuring random cell motility based on the positions of cell centroids
determined by manually outlining the periphery of individual cells in
ImageJ. Cell cortical stiffness measurements were obtained by indenting
cells with soft pyramidal probes of nominal spring constant 160 pN/nm
(22 kHz, Olympus, TR800PB), and fitting the first 500 nm of indentation
data with the Hertz model. For quantification of cell size, cell motility
and cell cortical stiffness, experiments were repeated three times and a
comparable number of measurements from independent experiments
were pooled.

For flow cytometric analysis, MDA-MB-231 cells were stained with
fluorescence-labeled antibodies CD44-FITC (BD biosciences, 555478) and
CD24-PE (BD biosciences, 555428) as per the manufacturer’s protocol. In
brief, after trypsinization, MDA-MB-231cells were incubated with CD44-
FITC and CD24-PE for 45 min. After labeling, cells were washed with
FACS buffer (PBS with 1% FBS) and cell sorting was performed in FACS
Aria Fusion (Becton Dickinson), using FACS Diva software (Becton
Dickinson). Suitable negative isotype controls were used to rule out the
background fluorescence. Sorted cells were collected in complete medium
(DMEM high glucose plus 10% FBS plus Antibiotic-Antimycotic solution
(HiMedia, A002A) to perform further experiments. The percentage of each
positive population was determined using quadrant or region statistics. Data
were analyzed using FACS Diva Software (Beckton Dickinson).

For spheroid invasion experiments, MDA-MB-231 cells were trypsinized
and resuspended in medium. Spheroids were generated using the hanging
drop method by suspending 4000 cells in 15 µl medium supplemented with
6.25 µg/ml rat tail collagen I (Corning, 354249). The drops were then
incubated at 37°C in 5% CO2 for 48 h to generate spheroids. After isolation,
spheroids were seeded on a bed of 1.5 mg/ml collagen gels, and then
incubated with three-dimensional collagen solution at 37°C for gelation to
occur. After 30–45 mins, wells were flooded with medium. Cells were fixed
and stained for nuclei, F-actin (Thermo Fisher Scientific, A22282) and
CD44 (Novus, NBP1-47386) at day 0 (2 h after spheroids were embedded in
collagen gels), day 1, day 3 and day 5. For quantification of CD44 intensity,
images were captured using an LSM microscope (Zeiss) at 10×
magnification under identical gain and exposure settings for all the
conditions. Captured images were processed and analyzed using Fiji

ImageJ. Raw integrated intensities of single cells were determined by
manually outlining individual cells using the selection tool in Fiji ImageJ.
For obtaining the normalized zone-wise distribution of CD44 intensity, the
average integrated CD44 intensity of each zone, determined using the raw
intensities of cells within that zone, was divided by the average integrated
CD44 intensity of the innermost zone. This work was approved by the
biosafety committee of the institute.

Computational methods
For studying the impact of phenotypic heterogeneity on cancer invasion, we
adapted our recently developed CPM-based two-dimensional model of
cancer invasion, taking cell size and cell deformability into account (Kumar
et al., 2016b). In our model, a cell aggregate (comprised of 69 cells) is
situated at the center of a two-dimensional ECM lattice (1 mm×1 mm size)
comprised of randomly positioned ECM fibers, with each ECM fiber being
2 µm in thickness and 30-40 µm in length. In simulations taking phenotypic
heterogeneity into account, size and area constraint (λa) of individual cells
were assigned values from normal distributions as depicted in Fig. 2B.
Although cell sizes were drawn from a normal distribution with mean size
(�A ¼ 517:5mm2 and s.d. σA = 86.1 μm2, cell deformabilities (i.e. λa’s) were
drawn from a normal distribution with �l ¼ 1E=L4 and s.d.sl ¼ 0:12E=L4.
For homogeneous cell clusters, cell size and cell deformability of all the
cells were set to the means of the above distributions, i.e. A=517.5 μm2 and
λ=1E/L4. Based on cell size and deformability, for initial analysis, the
heterogeneous population was divided into five groups, namely small and
soft cells (A , ð�A� sAÞ; la , ð�la � slÞ), small and stiff cells
(Ahð�A� sAÞ;laið�la þ slÞ), cells with intermediate size and
deformability (ð�A� sAÞ � A � ð�Aþ sAÞ; ð�la � slÞ � la � ð�la þ slÞ),
large and soft cells (A . ð�Aþ sAÞ, la , ð�la � slÞ), and large and stiff
cells (A . ð�Aþ sAÞ, la . ð�la þ slÞ). Apart from ECM fibers and cells,
the remaining pixels in the lattice were considered as ‘fluid’ pixels
mimicking the interstitial fluid. The different extent of adhesion between the
different types of pixels was accounted for by using distinct adhesion
energies (Jxy) between entities x andy. Although cell-matrix (Jcm), cell-fluid
(Jcf ), matrix-fluid (Jmf ) and fluid-fluid (Jff ) adhesion energies were
held constant (Jcm=16 kBT/L, Jcf =32 kBT/L, Jmf = Jff =35 kBT/L), cell-cell
adhesion energies (Jcc) were varied to mimic different extents of cell-cell
adhesion, with Jcc=1 kBT/Lmimicking collective cell migration and Jcc = 40
kBT/L mimicking single cell migration.

Spatiotemporal evolution of the simulation lattice was based on random
movement of individual pixels subject to transition probabilities based on
the Monte Carlo method. Each simulation step consisted of randomly
choosing two neighboring pixels, with one designated as the source pixel
and the other as the target pixel. An attempt to update the lattice was made
only when both the source and the target pixels represented either a ‘cell
pixel’ or a ‘fluid pixel’ (i.e. empty space), and the source and the target
pixels did not belong to the same cell. The proposed change is accepted with
probability p=1 if ΔE<0 and p ¼ e�DE=kBTm otherwise, where ΔE represents a
change in system energy due to the proposed change, and kB represents the
Boltzmann constant. Tm represents noise in the system and was set to 0.01T.
An attempt to update the lattice was made only when both the source and the
target pixels represented either a ‘cell pixel’ or a ‘fluid pixel’, with ‘matrix
pixels’ not participating in the random Monte Carlo updates. The total
system energy is given by the expression:

ETotal ¼
P

8 i;j and sðiÞ=sð jÞ
JtðsðiÞÞ;tðsð jÞÞ þ

P
8s

laðaðsÞ � a0Þ2

þ
X

8s
lpð pðsÞ � p0Þ2 þ wðsÞ � m� ½vðtargetÞ � vðsourceÞ�: ð1Þ

In the above expression, σ(i) represents the ID of pixel i and τ(σ) represents
the type of cell. The first term in the energy expression (i.e. Jt1 ;t2 ) represents
the boundary energy per unit length between cells of type τ1 and τ2, and is
indicative of the adhesion energy between two cells. The second and third
terms represent the energy associated with changes in size and perimeter of
cells from their preferred area (a0)/perimeter (p0). Although the area
constraint (λa) represents the bulk stiffness or inverse compressibility of a
given cell, the perimeter constraint (λp) is indicative of line tension. In our
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simulations, whereas λa of individual cells were assigned values as detailed
above, a constant value of λp=0.5kBT/L2 was chosen for all cells as
performed previously (Kumar et al., 2016b). For a cell of target size a0, the
target perimeter (p0) was set to 2

ffiffiffiffiffiffiffiffi
pa0

p
. The fourth energy term [w(σ)] is

associated with the active motility of a cell due to its inherent polarization,
and given by the expressionwðsÞ ¼ �m0p̂ , where μ0 represents the strength
of motility and p̂ represents the polarity vector, as described previously
(Kabla, 2012). Although μ0=50kBT/L was kept constant across all
simulations, p̂ at time t was defined as the average of the previous ten
displacement vectors, as performed in our previous work (Kumar et al.,
2016b). The last term in the energy expression was included to model
chemotaxis of cells in the direction of the chemoattractant gradient (Kumar
et al., 2018b), with μ representing the effective chemical potential, and
v(target) and v(source) representing the concentrations of chemoattractant at
target and source pixel, respectively. This term was used in the energy
expression only for simulating cancer invasion in the presence of a
chemotactic field. Parametric studies were performed for μ={200, 500,
1000, 2000, 5000}. For μ≥2000, few cells reached the right boundary (i.e.
location of highest chemokine concentration) within the maximum
simulation duration of 2010 MCS for all values of Jcc. Thus, robust
chemotaxis was observed for μ≥2000.

Cancer cells are known to invade by MMP-mediated degradation of the
surrounding ECM depending on the physicochemical properties of the ECM,
including ligand density and stiffness (Das et al., 2013, 2017). SolubleMMPs
activated by membrane-bound MT1-MMP then diffuse into the extracellular
space and degrade the surrounding ECM (Kumar et al., 2018a). To
incorporate this effect, we have integrated our CPM model with reaction-
diffusion MMP dynamics. To mimic the ECM density-dependent MMP
secretion profile observed in breast cancer cells, in our model, the number of
MMPmolecules secreted per unit time by a cell was assumed to be 0.05 sec−1

at the site of cell-fiber contact. Diffusion and degradation of soluble MMPs
were incorporated in our model using the reaction diffusion formalism given

by the equation
@MMPðx; tÞ

@t
¼ D:r2MMPðx; tÞ � d�MMPðx; tÞ, where

MMPðx; tÞ represents the concentration of MMP molecules at point x and
time t, D represents the diffusion coefficient, and δ the degradation rate of
soluble MMPs. D and δ were chosen to be 1.0×10−9 cm2 sec−1 and 0.002
sec−1, respectively.

Simulation implementation, visualization and data analysis
The complete simulation framework was implemented using the open
source package CompuCell3D (CC3D) (Swat et al., 2012). For
visualization, *.vtk files were generated from the CC3D simulations and
visualized in CC3D itself. For quantifying migration trajectories, the cell
centroid was tracked and logged to CSV files. These files were then
processed in R using custom written scripts to extract different invasiveness
metrics. The CC3D code used to implement the complete model is available
at https://github.com/sandeep13712/senlab-phenotypicheterogeneity.

Quantification of heterogeneity from single-cell RNA-seq datasets
The breast cancer dataset was downloaded from the GEO repository
(GSE75688) (Chung et al., 2017). Non-tumor and bulk samples were
removed from the dataset. Then, control RNA readings were removed, and
multiple readings for the same gene were added up to get a dataset with
unique gene names. An obtained preprocessed dataset was then used for
GSEA using the single sample GSEA method (Barbie et al., 2009).
Stemness and EMT enrichment analyses were performed using
MALTA_CURATED_STEMNESS_MARKERS and HALLMARK_
EPITHELIAL_MESENCHYMAL_TRANSITION gene sets downloaded
from the Molecular Signatures Database (Subramanian et al., 2005;
Liberzon et al., 2011; Malta et al., 2018). For calculating the enrichment
of biophysical characteristics, a custom gene set BiophysicalGeneset
comprising MYH9, MYH10, MYO10, MYO5B, MYO5C, RAC1, RAC2,
ACTB, ACTG1, ACTN1, ACTN4, VIM, ROCK1, ROCK2 and CDC42was
manually curated and used. For tSNE visualization, data were first log
transformed and then the first ten principal components were used for
computing the two-dimensional-tSNE projection. To quantify biophysical
heterogeneity in the MCF7 and MDA-MB-231 cell lines from the

GSE115869 and GSE124989 datasets (Birts et al., 2020; Jonasson et al.,
2019), downloaded datasets were log-transformed after adding 1 to all
transcript counts and then the distributions of genes relevant for different
aspects of cellular mechanics were quantified. Analysis was performed
using Python scripts [available in github repository (https://github.com/
sandeep13712/senlab-phenotypicheterogeneity)].
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