Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a monogenic disorder caused by mutations in PKD1 or PKD2, encoding polycystin-1 and polycystin-2, respectively. These polycystins form a cilia-localized complex that, when mutated, fails to inhibit an uncharacterized cilia-dependent cyst activation (CDCA) signal. This leads to progressive bilateral cyst growth and ultimately compromised renal function. Previous in vitro and in vivo studies from our group demonstrated that Hedgehog (Hh) signaling inhibition reduced renal cystic severity in PKD models. To further investigate, we inactivated several Hh pathway components (Gli1, Gli2, Gli3, Smo) in a Pkd1 hypomorphic mouse model through conditional deletion by tamoxifen-induced Cre-Lox recombination. We assessed cystic severity using kidney weight assessment and a microCT-based 3D imaging assay. Contrary to expectations, inactivation of Gli1 and Smo significantly increased cystogenesis. These findings suggest that Hh signaling does not mediate the CDCA signal.
Inhibition of Hedgehog signaling does not mitigate polycystic kidney disease severity in a Pkd1 mutant mouse model
Available to Purchase
- Award Group:
- Funder(s): National Institute of Diabetes and Digestive and Kidney Diseases
- Award Id(s): R01DK111682
- Funder(s):
Sean Gombart, Scott Houghtaling, Tzu-Hua Ho, David R. Beier; Inhibition of Hedgehog signaling does not mitigate polycystic kidney disease severity in a Pkd1 mutant mouse model. J Cell Sci 2025; jcs.264133. doi: https://doi.org/10.1242/jcs.264133
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
JCS fast-track option

Have a paper that has been reviewed elsewhere? JCS is pleased to consider such manuscripts for fast-tracked decision making. Send us your manuscript together with the full set of reviews and decision letters, and we will make an initial decision within one week.
Special Issue – Cell Biology of Mitochondria

Our special issue on ‘Cell Biology of Mitochondria’ is now complete. Explore this issue and read the Editorial from our Guest Editors Ana J. García-Sáez and Heidi McBride.
Save the date – Imaging Cell Dynamics

We are delighted to announce that we will be hosting a 2026 Imaging Cell Dynamics meeting. This meeting will provide a unique opportunity to bring together experts working at the interface between cell biology and imaging. Save the date for 11-14 May 2026 and register for more information.
Origin and evolution of mitochondrial inner membrane composition

In this Review, Kailash Venkatraman and colleagues provide an examination of the morphological similarities between prokaryotic intracytoplasmic membranes and mitochondrial inner membranes, and whether cristae evolution has driven specialisation of the mitochondrial lipidome.
Resolution in super-resolution microscopy
Super-resolution microscopy (SRM) has emerged as a powerful tool for biological discovery. In this Perspective, Kirti Prakash and colleagues compile expert opinions on crucial, yet often overlooked, aspects of SRM that are essential for maximising its benefits and advancing the field.