This work explores the intricate process of osmoregulation in Trypanosoma cruzi, the causative agent of Chagas disease, with a specific focus on the mechanisms of fluid discharge by the Contractile Vacuole Complex (CVC) and the role of the adhesion plaque (AP), a structure whose densities are located in the membrane domain shared by the CVC and the flagellar pocket. Cryopreparation of T. cruzi samples, combined with volume electron microscopy techniques, allowed for a comprehensive analysis of the essential mechanisms underlying the structural changes that take place in the AP during osmotic stress. Remodeling of the AP coupled to membrane fusion events leads to the formation of pores that connect the flagellar pocket and the CVC. The fluid discharge process followed sequential steps of pore opening, expansion, and closure, to allow membrane fusion. Additionally, this study uncovers structural variations in the CVC during cellular replication, providing insights into the cellular biology and physiology of trypanosomatids.
The adhesion plaque mediates fluid discharge and duplication of the contractile vacuole complex in Trypanosoma cruzi
Available to Purchase
- Award Group:
- Funder(s): National Institute of Allergy and Immunology, National Institutes of Health, USA.
- Award Id(s): 2R15AI122153
- Funder(s):
- Award Group:
- Funder(s): Financiadora de Estudos e Projetos
- Funder(s):
Ingrid Augusto, Wendell Girard Dias, Alejandra Schoijet, Guillermo Daniel Alonso, Veronica Jimenez, Wanderley de Souza, Kildare Miranda; The adhesion plaque mediates fluid discharge and duplication of the contractile vacuole complex in Trypanosoma cruzi. J Cell Sci 2025; jcs.263810. doi: https://doi.org/10.1242/jcs.263810
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
JCS fast-track option

Have a paper that has been reviewed elsewhere? JCS is pleased to consider such manuscripts for fast-tracked decision making. Send us your manuscript together with the full set of reviews and decision letters, and we will make an initial decision within one week.
Special Issue – Cell Biology of Mitochondria

Our special issue on ‘Cell Biology of Mitochondria’ is now complete. Explore this issue and read the Editorial from our Guest Editors Ana J. García-Sáez and Heidi McBride.
Save the date – Imaging Cell Dynamics

We are delighted to announce that we will be hosting a 2026 Imaging Cell Dynamics meeting. This meeting will provide a unique opportunity to bring together experts working at the interface between cell biology and imaging. Save the date for 11-14 May 2026 and register for more information.
Origin and evolution of mitochondrial inner membrane composition

In this Review, Kailash Venkatraman and colleagues provide an examination of the morphological similarities between prokaryotic intracytoplasmic membranes and mitochondrial inner membranes, and whether cristae evolution has driven specialisation of the mitochondrial lipidome.
Resolution in super-resolution microscopy
Super-resolution microscopy (SRM) has emerged as a powerful tool for biological discovery. In this Perspective, Kirti Prakash and colleagues compile expert opinions on crucial, yet often overlooked, aspects of SRM that are essential for maximising its benefits and advancing the field.