ABSTRACT
Eukaryotic cells are compartmentalized into membrane-bound organelles that must coordinate their responses to stimuli. One way that organelles communicate is via membrane contact sites (MCSs), sites of close apposition between organelles used for the exchange of ions, lipids and information. In this Cell Science at a Glance article and the accompanying poster, we describe an explosion of new methods that have led to exciting progress in this area and discuss key examples of how these methods have advanced our understanding of MCSs. We discuss how diffraction-limited and super-resolution fluorescence imaging approaches have provided important insight into the biology of interorganelle communication. We also describe how the development of multiple proximity-based methods has enabled the detection of MCSs with high accuracy and precision. Finally, we assess how recent advances in electron microscopy (EM), considered the gold standard for detecting MCSs, have allowed the visualization of MCSs and associated proteins in 3D at ever greater resolution.
Footnotes
Funding
Our work in this area is supported by the National Institute of General Medical Sciences of the National Institutes of Health under award number R35GM133460, and by a Collaborative Pairs Award from the Chan Zuckerberg Initiative. Deposited in PMC for release after 12 months.
High-resolution poster and poster panels
A high-resolution version of the poster and individual poster panels are available for downloading at https://journals.biologists.com/jcs/article-lookup/doi/10.1242/jcs.262020#supplementary-data.
Special Issue
This article is part of the Special Issue ‘Imaging Cell Architecture and Dynamics’, guest edited by Lucy Collinson and Guillaume Jacquemet. See related articles at https://journals.biologists.com/jcs/issue/137/20.