The regulation of the intracellular level of ATP is a fundamental aspect of bioenergetics. Actin cytoskeletal dynamics have been reported to be an energetic drain in developing neurons and platelets. We addressed the role of actin dynamics in primary embryonic chicken neurons using luciferase assays, and by measurement of the ATP/ADP ratio using the ratiometric reporter PercevalHR and the ATP level using the ratiometric reporter mRuby-iATPSnFR. None of the methods revealed an effect of suppressing actin dynamics on the decline in the neuronal ATP level or the ATP/ADP ratio following shutdown of ATP production. Similarly, we find that treatments that elevate or suppress actin dynamics do not alter the ATP/ADP ratio in growth cones, the subcellular domain with the highest actin dynamics in developing neurons. Collectively, the data indicate that actin cytoskeletal dynamics are not a significant energy drain in developing neurons and that the ATP/ADP ratio is maintained when energy utilization varies. Discrepancies between prior work and the current data are discussed with emphasis on methodology and interpretation of the data.

You do not currently have access to this content.