Bax and Bak are known to play a central role in facilitating the release of mitochondrial intermembrane proteins during apoptosis. The detailed mechanism, however, is still not clear. Using live cell imaging techniques, we showed here that Bax underwent four distinct stages of dynamic redistribution during UV-induced apoptosis. At stage I, Bax was distributed diffusely in the cytosol. About an hour after UV treatment at stage II, Bax started to translocate to mitochondria and distributed uniformly at the mitochondrial outer membrane (MOM). Within a few minutes, at stage III, Bax and Bak began to form small complexes at the MOM. Later, at stage IV, these Bax and Bak complexes expanded to become large clusters. We found that the formation of Bax-Bak small complexes at stage III was responsible for permeabilizing the MOM to release cytochrome c and Smac. Using a FRET technique, we further showed that Bax binds to Bak within the complex formed at the MOM during stage III. Finally, using a quantitative fluorescence measurement, we determined that the Bax-Bak complex was about 0.25 μm wide and composed of more than 100 protein molecules. These findings suggest that the Bax-Bak structure responsible for releasing mitochondrial proteins during apoptosis is not channel-like.
Dynamics and structure of the Bax-Bak complex responsible for releasing mitochondrial proteins during apoptosis Available to Purchase
Liying Zhou, Donald C. Chang; Dynamics and structure of the Bax-Bak complex responsible for releasing mitochondrial proteins during apoptosis. J Cell Sci 1 July 2008; 121 (13): 2186–2196. doi: https://doi.org/10.1242/jcs.024703
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Interviews with Biologists @ 100 conference speakers

Explore our interviews with keynote speakers from the Biologists @ 100 conference, hosted to celebrate our publisher’s 100th anniversary, where we discuss climate change and biodiversity with Hans-Otto Pörtner and Jane Francis, health and disease with Charles Swanton and Sadaf Farooqi, and emerging technologies with Manu Prakash and Jennifer Lippincott-Schwartz.
Introducing our new Associate Editors

In this Editorial, JCS Editor-in-Chief Michael Way welcomes five new Associate Editors to the JCS team. These Associate Editors will expand our support for the wider cell biology community and handle articles in immune cell biology, proteostasis, imaging and image analysis, plant cell biology, and stem cell biology and modelling.
The spatial choreography of mRNA biosynthesis

In their Review, André Ventura-Gomes and Maria Carmo-Fonseca detail the latest research progress and technological advancements that are helping to unlock how nuclear organisation underpins control of gene transcription and pre-mRNA splicing.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 6 June 2025 (decision by week commencing 28 July 2025) and 5 September 2025 (decision by week commencing 20 October 2025).
The emerging roles of the endoplasmic reticulum in mechanosensing and mechanotransduction

In their Review, Jonathan Townson and Cinzia Progida highlight recently emerging evidence for a role of the endoplasmic reticulum in enabling a cell to sense and respond to changes in the extracellular mechanical environment.