Stabilization of actin filaments is critical for supporting actomyosin-based contractility and for maintaining stable cellular structures. Tropomyosin is a well-characterized ubiquitous actin stabilizer that inhibits ADF/cofilin-dependent actin depolymerization. Here, we show that UNC-87, a calponin-related Caenorhabditis elegans protein with seven calponin-like repeats, competes with ADF/cofilin for binding to actin filaments and inhibits ADF/cofilin-dependent filament severing and depolymerization in vitro. Mutations in the unc-87 gene suppress the disorganized actin phenotype in an ADF/cofilin mutant in the C. elegans body wall muscle, supporting their antagonistic roles in regulating actin stability in vivo. UNC-87 and tropomyosin exhibit synergistic effects in stabilizing actin filaments against ADF/cofilin, and direct comparison reveals that UNC-87 effectively stabilizes actin filaments at much lower concentrations than tropomyosin. However, the in vivo functions of UNC-87 and tropomyosin appear different, suggesting their distinct roles in the regulation of actomyosin assembly and cellular contractility. Our results demonstrate that actin binding via calponin-like repeats competes with ADF/cofilin-driven cytoskeletal turnover, and is critical for providing the spatiotemporal regulation of actin filament stability.
UNC-87, a calponin-related protein in C. elegans, antagonizes ADF/cofilin-mediated actin filament dynamics Available to Purchase
Sawako Yamashiro, Mario Gimona, Shoichiro Ono; UNC-87, a calponin-related protein in C. elegans, antagonizes ADF/cofilin-mediated actin filament dynamics. J Cell Sci 1 September 2007; 120 (17): 3022–3033. doi: https://doi.org/10.1242/jcs.013516
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Special Issue – Cell Biology of Mitochondria

Our special issue on ‘Cell Biology of Mitochondria’ is now complete. Explore this issue and read the Editorial from our Guest Editors Ana J. García-Sáez and Heidi McBride.
Save the date – Imaging Cell Dynamics

We are delighted to announce that we will be hosting a 2026 Imaging Cell Dynamics meeting. This meeting will provide a unique opportunity to bring together experts working at the interface between cell biology and imaging. Save the date for 11-14 May 2026 and register for more information.
Mitochondria–membranous organelle contacts at a glance

Antigoni Diokmetzidou and Luca Scorrano provide an overview of contacts between mitochondria and other membranous organelles, describing the interorganelle tethers involved and the factors that regulate the composition and functions of such contacts.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 6 June 2025 (decision by week commencing 28 July 2025) and 5 September 2025 (decision by week commencing 20 October 2025).
JCS fast-track option
Have a paper that has been reviewed elsewhere? JCS is pleased to consider such manuscripts for fast-tracked decision making. Send us your manuscript together with the full set of reviews and decision letters, and we will make an initial decision within one week.