In mammalian heterochromatin, cytosine bases of CpG dinucleotides are symmetrically modified by methylation. Patterns of CpG methylation are maintained by the action of Dnmt1, the mammalian maintenance cytosine methyltransferase enzyme. We genetically manipulated the levels of CpG methylation and found that extensive chromatin alterations occur in pericentric heterochromatin. Homozygous mutations in Dnmt1 cause severe hypomethylation of pericentric heterochromatin and concomitant chromatin reorganization involving the histone variant macroH2A. Demethylation-induced alterations in macroH2A localization occur in both interphase and mitotic embryonic stem (ES) cells. Heterochromatin protein 1 (HP1) marks interphase pericentric heterochromatin (chromocenters). MacroH2A immunostaining in Dnmt1–/– cells becomes coincident with chromocenters detected by HP1 content. MacroH2A, but not HP1, is enriched in nuclease-resistant chromatin fractions extracted from Dnmt1–/– cells. Normal localization of macroH2A was restored upon reintroduction of a Dnmt1 transgene into Dnmt1–/– cells. MacroH2A localization was also affected in T-antigen-transformed fibroblasts subjected to the conditional mutation of Dnmt1. Together, these results suggest that pericentric heterochromatin can be maintained in the absence of CpG methylation, but in a significantly altered configuration.
DNA CpG hypomethylation induces heterochromatin reorganization involving the histone variant macroH2A Available to Purchase
Present address: Boston Children's Hospital, Pathology Department, 300 Longwood Ave, Boston, MA 02115, USA
Present address: Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
Yinghong Ma, Stephanie B. Jacobs, Laurie Jackson-Grusby, Mary-Ann Mastrangelo, José A. Torres-Betancourt, Rudolf Jaenisch, Theodore P. Rasmussen; DNA CpG hypomethylation induces heterochromatin reorganization involving the histone variant macroH2A. J Cell Sci 15 April 2005; 118 (8): 1607–1616. doi: https://doi.org/10.1242/jcs.02291
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Special Issue – Cell Biology of Mitochondria

Our special issue on ‘Cell Biology of Mitochondria’ is now complete. Explore this issue and read the Editorial from our Guest Editors Ana J. García-Sáez and Heidi McBride.
Save the date – Imaging Cell Dynamics

We are delighted to announce that we will be hosting a 2026 Imaging Cell Dynamics meeting. This meeting will provide a unique opportunity to bring together experts working at the interface between cell biology and imaging. Save the date for 11-14 May 2026 and register for more information.
Mitochondria–membranous organelle contacts at a glance

Antigoni Diokmetzidou and Luca Scorrano provide an overview of contacts between mitochondria and other membranous organelles, describing the interorganelle tethers involved and the factors that regulate the composition and functions of such contacts.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 6 June 2025 (decision by week commencing 28 July 2025) and 5 September 2025 (decision by week commencing 20 October 2025).
JCS fast-track option

Have a paper that has been reviewed elsewhere? JCS is pleased to consider such manuscripts for fast-tracked decision making. Send us your manuscript together with the full set of reviews and decision letters, and we will make an initial decision within one week.
Help shape your future publishing experience

We are gathering feedback from our readers, authors and reviewers, to help us shape the next 100 years and to keep offering a publishing experience that truly supports our community. Please have your say by completing our community survey. Survey closes on 25 June.