An outcome of overloading of the endoplasmic reticulum (ER) folding machinery is a perturbation in ER function and the formation of intracellular aggregates. The latter is a key pathogenic factor in numerous diseases known as ER storage diseases. Here, we report that heterologous overexpression of the green fluorescent protein-tagged iodide transporter pendrin (GFP-PDS) perturbs folding and degradation processes in the ER. Pendrin (PDS) is a chloride-iodide transporter found in thyroid cells. Mutations in PDS can cause its retention in the ER and are associated with Pendred syndrome. Biochemical and live-cell analyses demonstrated that wild-type GFP-PDS is predominantly retained in perinuclear aggregates and in ER membranes, causing their collapse and vesiculation. Inhibition of protein synthesis by cycloheximide (CHX) or puromycin caused dissociation of the GFP-PDS aggregates and returned the ER to its normal reticular morphology. Blocking protein synthesis promoted folding and export of ER-retained GFP-PDS, as demonstrated by surface-biotinylation analysis and by CHX- or puromycin-induced accumulation of YFP-PDS in the Golgi apparatus during a 20°C temperature-block experiment. The chemical chaperone trimethylamine-N-oxide (TMAO) also reversed the GFP-PDS-mediated ER collapse and vesiculation, suggesting that exposed hydrophobic stretches of misfolded or aggregated GFP-PDS may contribute to ER retention. These data suggest that GFP-PDS is a slow-folding protein with a propensity to form aggregates when overexpressed. Thus, we describe a system for the reversible induction of ER stress that is based entirely on the heterologous overexpression of GFP-PDS.
Protein synthesis inhibitors and the chemical chaperone TMAO reverse endoplasmic reticulum perturbation induced by overexpression of the iodide transporter pendrin Available to Purchase
Jeanne Shepshelovich, Lee Goldstein-Magal, Anat Globerson, Paul M. Yen, Pnina Rotman-Pikielny, Koret Hirschberg; Protein synthesis inhibitors and the chemical chaperone TMAO reverse endoplasmic reticulum perturbation induced by overexpression of the iodide transporter pendrin. J Cell Sci 15 April 2005; 118 (8): 1577–1586. doi: https://doi.org/10.1242/jcs.02294
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Special Issue – Cell Biology of Mitochondria

Our special issue on ‘Cell Biology of Mitochondria’ is now complete. Explore this issue and read the Editorial from our Guest Editors Ana J. García-Sáez and Heidi McBride.
Save the date – Imaging Cell Dynamics

We are delighted to announce that we will be hosting a 2026 Imaging Cell Dynamics meeting. This meeting will provide a unique opportunity to bring together experts working at the interface between cell biology and imaging. Save the date for 11-14 May 2026 and register for more information.
Mitochondria–membranous organelle contacts at a glance

Antigoni Diokmetzidou and Luca Scorrano provide an overview of contacts between mitochondria and other membranous organelles, describing the interorganelle tethers involved and the factors that regulate the composition and functions of such contacts.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 6 June 2025 (decision by week commencing 28 July 2025) and 5 September 2025 (decision by week commencing 20 October 2025).
JCS fast-track option

Have a paper that has been reviewed elsewhere? JCS is pleased to consider such manuscripts for fast-tracked decision making. Send us your manuscript together with the full set of reviews and decision letters, and we will make an initial decision within one week.
Help shape your future publishing experience

We are gathering feedback from our readers, authors and reviewers, to help us shape the next 100 years and to keep offering a publishing experience that truly supports our community. Please have your say by completing our community survey. Survey closes on 25 June.