The small GTPases of the Rho family are key intermediates in cellular signalling triggered by activated cell-adhesion receptors. In this study, we took advantage of RNA interference (RNAi) using small interfering RNAs (siRNAs) to define the roles of the best-characterized members of the RhoGTPase family, RhoA, Rac1 and Cdc42, in the control of MMP-1, MMP-2 and type-I-collagen expression in normal human skin fibroblasts (HSFs). A specific and long-lasting repression, up to 7 days after transfection, of the three GTPases was achieved by transient transfection of specific siRNA. The silencing of Cdc42, but not that of RhoA or Rac1, induced a 15-fold increase in MMP-1 secretion. This upregulation was confirmed at the mRNA level and observed with two different siRNAs targeting Cdc42. Such a regulation was also observed in various human cell lines and was rescued by re-expressing wild-type Cdc42 encoded by a construct bearing silent mutations impeding its recognition by the siRNA. By contrast, MMP-2 and type-I-collagen expression was not affected by the individual silencing of each Rho GTPase. Cytokine protein array, enzyme-linked immunosorbent assays and reverse-transcription PCR measurements revealed that ablation of Cdc42 induced an overexpression of interleukin 8 and MCP-1. Although these cytokines are known to induce the expression of MMP-1, we showed that they were not involved in the Cdc42-mediated upregulation of MMP-1. Silencing of Cdc42 also induced an increased phosphorylation of ERK1/2 and p38 MAP kinase. The use of chemical inhibitors on Cdc42-ablated cells revealed that the upregulation of MMP-1 is dependent on the ERK1/2 pathways, whereas the p38 MAP kinase pathway displayed an inhibitory role. Simultaneous knock-down of two or three Rho GTPases allowed us to demonstrate that the RhoA-ROCK pathway was not involved in this regulation but that the silencing of Rac1 reduced the effect of Cdc42 suppression. These data suggest that, in vivo, when cell/extracellular-matrix interactions via integrins induce cytoskeleton organization, MMP-1 expression is maintained at a low level by Cdc42 via a repression of the Rac1 and ERK1/2 pathways. Therefore, Cdc42 contributes to ECM homeostasis and connective tissue integrity.
Cdc42 downregulates MMP-1 expression by inhibiting the ERK1/2 pathway
Christophe F. Deroanne, Delphine Hamelryckx, T. T. Giang Ho, Charles A. Lambert, Philippe Catroux, Charles M. Lapière, Betty V. Nusgens; Cdc42 downregulates MMP-1 expression by inhibiting the ERK1/2 pathway. J Cell Sci 15 March 2005; 118 (6): 1173–1183. doi: https://doi.org/10.1242/jcs.01707
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Call for papers - Cilia and Flagella: from Basic Biology to Disease

We are welcoming submissions for our upcoming special issue: Cilia and Flagella: from Basic Biology to Disease. This issue will be coordinated by two Guest Editors: Pleasantine Mill (University of Edinburgh) and Lotte Pedersen (University of Copenhagen). Extended submission deadline: 31 March 2025.
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about Journal of Cell Science’s journey and explore the history of each of our sister journals: Development, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open.
Introducing our new Associate Editors

In this Editorial, JCS Editor-in-Chief Michael Way welcomes five new Associate Editors to the JCS team. These Associate Editors will expand our support for the wider cell biology community and handle articles in immune cell biology, proteostasis, imaging and image analysis, plant cell biology, and stem cell biology and modelling.
Diversity of microtubule arrays in animal cells at a glance

In this Cell Science at a Glance article, Emma van Grinsven and Anna Akhmanova provide an overview of the diverse microtubule arrays present in differentiated animal cells and discuss how these arrays form and function.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 7 March 2025 (decision by week commencing 21 April 2025) and 6 June 2025 (decision by week commencing 28 July 2025).