In the mechanism underlying the phototactic behavior of Chlamydomonas, Ca2+ has been thought to control the dominance between the two flagella so as to steer the cell to correct directions. A newly isolated mutant, lsp1, that displays weak phototaxis was found to be defective in this Ca2+-dependent shift in flagellar dominance; in demembranated and reactivated cell models, the trans flagellum (the flagellum farthest from the eyespot) beat more strongly than the other (the cis flagellum) in about half of the cells regardless of the Ca2+ concentration between <10-9 M and 10-6 M, a range over which wild-type cell models display switching of flagellar dominance. This is unexpected because ptx1, another mutant that is also deficient in flagellar dominance control, has been reported to lack phototactic ability. We therefore re-examined ptx1 and another reportedly non-phototactic mutant, ida1, which lacks inner arm dynein subspecies f (also called I1). Both were found to retain reduced phototactic abilities. These results indicate that both Ca2+-dependent flagellar dominance control and inner-arm dynein subspecies f are important for phototaxis, but are not absolutely necessary. Analysis of the flagellar beat frequency in lsp1 cell models showed that both of the flagella beat at the frequency of the cis flagellum in wild type. In addition, lsp1 and ptx1 were found to be deficient in determining the sign of phototactic migration. Hence, the Ca2+-dependent flagellar dominance control detected in demembranated cells might be involved in the determination of the sign of phototaxis. The gene responsible for the lsp1 mutation was identified by phenotype rescue experiments and found to have sequences for phosphorylation.
Phototactic activity in Chlamydomonas 'non-phototactic' mutants deficient in Ca2+-dependent control of flagellar dominance or in inner-arm dynein
Noriko Okita, Nahoko Isogai, Masafumi Hirono, Ritsu Kamiya, Kenjiro Yoshimura; Phototactic activity in Chlamydomonas 'non-phototactic' mutants deficient in Ca2+-dependent control of flagellar dominance or in inner-arm dynein. J Cell Sci 1 February 2005; 118 (3): 529–537. doi: https://doi.org/10.1242/jcs.01633
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Call for papers - Cilia and Flagella: from Basic Biology to Disease

We are welcoming submissions for our upcoming special issue: Cilia and Flagella: from Basic Biology to Disease. This issue will be coordinated by two Guest Editors: Pleasantine Mill (University of Edinburgh) and Lotte Pedersen (University of Copenhagen). Extended submission deadline: 31 March 2025.
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about Journal of Cell Science’s journey and explore the history of each of our sister journals: Development, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open.
Introducing our new Associate Editors

In this Editorial, JCS Editor-in-Chief Michael Way welcomes five new Associate Editors to the JCS team. These Associate Editors will expand our support for the wider cell biology community and handle articles in immune cell biology, proteostasis, imaging and image analysis, plant cell biology, and stem cell biology and modelling.
Diversity of microtubule arrays in animal cells at a glance

In this Cell Science at a Glance article, Emma van Grinsven and Anna Akhmanova provide an overview of the diverse microtubule arrays present in differentiated animal cells and discuss how these arrays form and function.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 7 March 2025 (decision by week commencing 21 April 2025) and 6 June 2025 (decision by week commencing 28 July 2025).