Generation of inside cells that develop into inner cell mass (ICM) and outside cells that develop into trophectoderm is central to the development of the early mouse embryo. Critical to this decision is the development of cell polarity and the associated asymmetric (differentiative) divisions of the 8-cell-stage blastomeres. The underlying molecular mechanisms for these events are not understood. As the Par3/aPKC complex has a role in establishing cellular polarity and division orientation in other systems, we explored its potential function in the developing mouse embryo. We show that both Par3 and aPKC adopt a polarized localization from the 8-cell stage onwards and that manipulating their function re-directs cell positioning and consequently influences cell fate. Injection of dsRNA against Par3 or mRNA for a dominant negative form of aPKC into a random blastomere at the 4-cell stage directs progeny of the injected cell into the inside part of the embryo. This appears to result from both an increased frequency by which such cells undertake differentiative divisions and their decreased probability of retaining outside positions. Thus, the natural spatial allocation of blastomere progeny can be over-ridden by downregulation of Par3 or aPKC, leading to a deceased tendency for them to remain outside and so develop into trophectoderm. In addition, this experimental approach illustrates a powerful means of manipulating gene expression in a specific clonal population of cells in the preimplantation embryo.
Downregulation of Par3 and aPKC function directs cells towards the ICM in the preimplantation mouse embryo
These authors contributed equally to this work
On leave from the Department of Experimental Embryology, Polish Academy of Science, Jastrzebiec, 05-552, Poland
Present address: Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10021, USA
Berenika Plusa, Stephen Frankenberg, Andrew Chalmers, Anna-Katerina Hadjantonakis, Catherine A. Moore, Nancy Papalopulu, Virginia E. Papaioannou, David M. Glover, Magdalena Zernicka-Goetz; Downregulation of Par3 and aPKC function directs cells towards the ICM in the preimplantation mouse embryo. J Cell Sci 1 February 2005; 118 (3): 505–515. doi: https://doi.org/10.1242/jcs.01666
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Call for papers - Cilia and Flagella: from Basic Biology to Disease

We are welcoming submissions for our upcoming special issue: Cilia and Flagella: from Basic Biology to Disease. This issue will be coordinated by two Guest Editors: Pleasantine Mill (University of Edinburgh) and Lotte Pedersen (University of Copenhagen). Extended submission deadline: 31 March 2025.
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about Journal of Cell Science’s journey and explore the history of each of our sister journals: Development, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open.
Introducing our new Associate Editors

In this Editorial, JCS Editor-in-Chief Michael Way welcomes five new Associate Editors to the JCS team. These Associate Editors will expand our support for the wider cell biology community and handle articles in immune cell biology, proteostasis, imaging and image analysis, plant cell biology, and stem cell biology and modelling.
Diversity of microtubule arrays in animal cells at a glance

In this Cell Science at a Glance article, Emma van Grinsven and Anna Akhmanova provide an overview of the diverse microtubule arrays present in differentiated animal cells and discuss how these arrays form and function.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 7 March 2025 (decision by week commencing 21 April 2025) and 6 June 2025 (decision by week commencing 28 July 2025).