Changes in the expression and distribution of nuclear lamins were investigated during C2C12 myoblast differentiation. The expression of most lamins was unchanged during myogenesis. By contrast, lamin-B2 expression increased and LAP2α expression decreased twofold. These changes were correlated with reduced solubility and redistribution of A-type lamins. When C2C12 myoblasts were transfected with a lamin-A mutant that causes autosomal dominant Emery-Dreifuss muscular dystrophy (AD-EDMD), the mutant protein accumulated in the nucleoplasm and exerted dominant influences over endogenous lamins. Myoblasts transfected with wild-type lamins differentiated, albeit more slowly, whereas myoblasts transfected with mutant lamins failed to differentiate. Myoblast differentiation requires dephosphorylation of the retinoblastoma protein Rb. During myogenesis, Rb was rapidly and progressively dephosphorylated. Underphosphorylated Rb formed complexes with LAP2α in proliferating myoblasts and postmitotic myoblasts. In myoblasts transfected with the mutant lamins, this complex was disrupted. These data suggest that remodelling of the nucleoskeleton is necessary for skeletal-muscle differentiation and for correct regulation of Rb pathways.
Remodelling of the nuclear lamina and nucleoskeleton is required for skeletal muscle differentiation in vitro
Present address: Institute of Human Genetics, University of Newcastle upon Tyne, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
Ewa Markiewicz, Maria Ledran, Christopher J. Hutchison; Remodelling of the nuclear lamina and nucleoskeleton is required for skeletal muscle differentiation in vitro. J Cell Sci 15 January 2005; 118 (2): 409–420. doi: https://doi.org/10.1242/jcs.01630
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Call for papers - Cilia and Flagella: from Basic Biology to Disease

We are welcoming submissions for our upcoming special issue: Cilia and Flagella: from Basic Biology to Disease. This issue will be coordinated by two Guest Editors: Pleasantine Mill (University of Edinburgh) and Lotte Pedersen (University of Copenhagen). Extended submission deadline: 31 March 2025.
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about Journal of Cell Science’s journey and explore the history of each of our sister journals: Development, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open.
Introducing our new Associate Editors

In this Editorial, JCS Editor-in-Chief Michael Way welcomes five new Associate Editors to the JCS team. These Associate Editors will expand our support for the wider cell biology community and handle articles in immune cell biology, proteostasis, imaging and image analysis, plant cell biology, and stem cell biology and modelling.
Diversity of microtubule arrays in animal cells at a glance

In this Cell Science at a Glance article, Emma van Grinsven and Anna Akhmanova provide an overview of the diverse microtubule arrays present in differentiated animal cells and discuss how these arrays form and function.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 7 March 2025 (decision by week commencing 21 April 2025) and 6 June 2025 (decision by week commencing 28 July 2025).