Calmodulin (CaM) is a ubiquitous transducer of intracellular Ca2+ signals and plays a key role in the regulation of the function of all cells. The interaction of CaM with a specific target is determined not only by the Ca2+-dependent affinity of calmodulin but also by the proximity to that target in the cellular environment. Although a few reports of stimulus-dependent nuclear targeting of CaM have appeared, the mechanisms by which CaM is targeted to non-nuclear sites are less clear. Here, we investigate the hypothesis that MARCKS is a regulator of the spatial distribution of CaM within the cytoplasm of differentiated smooth-muscle cells. In overlay assays with portal-vein homogenates, CaM binds predominantly to the MARCKS-containing band. MARCKS is abundant in portal-vein smooth muscle (∼16 μM) in comparison to total CaM (∼40 μM). Confocal images indicate that calmodulin and MARCKS co-distribute in unstimulated freshly dissociated smooth-muscle cells and are co-targeted simultaneously to the cell interior upon depolarization. Protein-kinase-C (PKC) activation triggers a translocation of CaM that precedes that of MARCKS and causes multisite, sequential MARCKS phosphorylation. MARCKS immunoprecipitates with CaM in a stimulus-dependent manner. A synthetic MARCKS effector domain (ED) peptide labelled with a photoaffinity probe cross-links CaM in smooth-muscle tissue in a stimulus-dependent manner. Both cross-linking and immunoprecipitation increase with increased Ca2+ concentration, but decrease with PKC activation. Introduction of a nonphosphorylatable MARCKS decoy peptide blocks the PKC-mediated targeting of CaM. These results indicate that MARCKS is a significant, PKC-releasable reservoir of CaM in differentiated smooth muscle and that it contributes to CaM signalling by modulating the intracellular distribution of CaM.

You do not currently have access to this content.