Voltage-gated potassium (Kv) channels regulate action potential duration in nerve and muscle; therefore changes in the number and location of surface channels can profoundly influence electrical excitability. To investigate trafficking of Kv2.1, 1.4 and 1.3 within the plasma membrane, we combined the expression of fluorescent protein-tagged Kv channels with live cell confocal imaging. Kv2.1 exhibited a clustered distribution in HEK cells similar to that seen in hippocampal neurons, whereas Kv1.4 and Kv1.3 were evenly distributed over the plasma membrane. Using FRAP, surface Kv2.1 displayed limited mobility; approximately 40% of the fluorescence recovered within 20 minutes of photobleach (Mf=0.41±0.04). Recovery occurred not by diffusion from adjacent membrane but probably by transport of nascent channel from within the cell. By contrast, the Kv1 family members Kv1.4 and Kv1.3 were highly mobile, both showing approximately 80% recovery (Kv 1.4 Mf=0.78±0.07; Kv1.3 Mf=0.78±0.04; without correction for photobleach); unlike Kv2.1, recovery was consistent with diffusion of channel from membrane adjacent to the bleach region. Studies using PA-GFP-tagged channels were consistent with the FRAP results. Following photoactivation of a small region of plasma membrane PA-GFP-Kv2.1 remained restricted to the photoactivation ROI, while PA-GFP-Kv1.4 rapidly diffused throughout the cell surface. Additionally, PA-GFP-Kv2.1 moved into regions of the cell membrane not adjacent to the original photoactivation ROI. Sucrose density gradient analysis indicated that half of Kv2.1 is part of a large, macromolecular complex while Kv1.4 sediments as predicted for the tetrameric channel complex. Disruption of membrane cholesterol by cyclodextrin minimally altered Kv2.1 mobility (Mf=0.32±0.03), but significantly increased surface cluster size by at least fourfold. By comparison, the mobility of Kv1.4 decreased following cholesterol depletion with no change in surface distribution. The mobility of Kv1.3 was slightly increased following cyclodextrin treatment. These results indicate that (1) Kv2.1, Kv1.4 and Kv1.3 exist in distinct compartments that exhibit different trafficking properties, (2) membrane cholesterol levels differentially modulate the trafficking and localization of Kv channels and (3) Kv2.1 expressed in HEK cells exhibits a surface distribution similar to that seen in native cells.
Targeting of voltage-gated potassium channel isoforms to distinct cell surface microdomains Available to Purchase
Kristen M. S. O'Connell, Michael M. Tamkun; Targeting of voltage-gated potassium channel isoforms to distinct cell surface microdomains. J Cell Sci 15 May 2005; 118 (10): 2155–2166. doi: https://doi.org/10.1242/jcs.02348
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Interviews with Biologists @ 100 conference speakers

Explore our interviews with keynote speakers from the Biologists @ 100 conference, hosted to celebrate our publisher’s 100th anniversary, where we discuss climate change and biodiversity with Hans-Otto Pörtner and Jane Francis, health and disease with Charles Swanton and Sadaf Farooqi, and emerging technologies with Manu Prakash and Jennifer Lippincott-Schwartz.
Introducing our new Associate Editors

In this Editorial, JCS Editor-in-Chief Michael Way welcomes five new Associate Editors to the JCS team. These Associate Editors will expand our support for the wider cell biology community and handle articles in immune cell biology, proteostasis, imaging and image analysis, plant cell biology, and stem cell biology and modelling.
The spatial choreography of mRNA biosynthesis

In their Review, André Ventura-Gomes and Maria Carmo-Fonseca detail the latest research progress and technological advancements that are helping to unlock how nuclear organisation underpins control of gene transcription and pre-mRNA splicing.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 6 June 2025 (decision by week commencing 28 July 2025) and 5 September 2025 (decision by week commencing 20 October 2025).
The emerging roles of the endoplasmic reticulum in mechanosensing and mechanotransduction

In their Review, Jonathan Townson and Cinzia Progida highlight recently emerging evidence for a role of the endoplasmic reticulum in enabling a cell to sense and respond to changes in the extracellular mechanical environment.