Keratin polypeptides 8 and 18 (K8/K18) are the major intermediate filament proteins of pancreatic acinar cells and hepatocytes. Pancreatic keratin function is unknown, whereas hepatocyte keratins protect from mechanical and non-mechanical forms of stress. We characterized steady-state pancreatic keratin expression in Balb/c mice after caerulein and choline-deficient ethionine-supplemented diet (CDD), or on exposure to the generalized stresses of heat and water immersion. Keratins were studied at the protein, RNA and organizational levels. Isolated acini were used to study the role of nuclear factor (NF)-κB using selective inhibitors. Keratins were found to be abundant proteins making up 0.2%, 0.3% and 0.5% of the total cellular protein of pancreas, liver and small intestine, respectively. Caerulein and CDD caused a threefold transcription-mediated overall increase in K8/K18/K19/K20 proteins. Keratin overexpression begins on tissue recovery, peaks 2 days after caerulein injection, or 1 day after CDD discontinuation, and returns to basal levels after 10 days. K19/K20-containing cytoplasmic filaments are nearly absent pre-injury but form post-injury then return to their original membrane-proximal distribution after 10 days. By contrast, generalized stresses of heat or water-immersion stress do not alter keratin expression levels. Caerulein-induced keratin overexpression is associated with NF-κB activation when tested using ex vivo acinar cell cultures. In conclusion, keratins are abundant proteins that can behave as stress proteins in response to tissue-specific but not generalized forms of injury. Pancreatic keratin overexpression is associated with NF-κB activation and may serve unique functions in acinar or ductal cell response to injury.
Organ-specific stress induces mouse pancreatic keratin overexpression in association with NF-κB activation
Author to whom reprint requests should be addressed
Bihui Zhong, Qin Zhou, Diana M. Toivola, Guo-Zhong Tao, Evelyn Z. Resurreccion, M. Bishr Omary; Organ-specific stress induces mouse pancreatic keratin overexpression in association with NF-κB activation. J Cell Sci 1 April 2004; 117 (9): 1709–1719. doi: https://doi.org/10.1242/jcs.01016
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Interviews with Biologists @ 100 conference speakers

Explore our interviews with keynote speakers from the Biologists @ 100 conference, hosted to celebrate our publisher’s 100th anniversary, where we discuss climate change and biodiversity with Hans-Otto Pörtner and Jane Francis, health and disease with Charles Swanton and emerging technologies with Manu Prakash and Jennifer Lippincott-Schwartz.
Introducing our new Associate Editors

In this Editorial, JCS Editor-in-Chief Michael Way welcomes five new Associate Editors to the JCS team. These Associate Editors will expand our support for the wider cell biology community and handle articles in immune cell biology, proteostasis, imaging and image analysis, plant cell biology, and stem cell biology and modelling.
The spatial choreography of mRNA biosynthesis

In their Review, André Ventura-Gomes and Maria Carmo-Fonseca detail the latest research progress and technological advancements that are helping to unlock how nuclear organisation underpins control of gene transcription and pre-mRNA splicing.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 6 June 2025 (decision by week commencing 28 July 2025) and 5 September 2025 (decision by week commencing 20 October 2025).
The emerging roles of the endoplasmic reticulum in mechanosensing and mechanotransduction

In their Review, Jonathan Townson and Cinzia Progida highlight recently emerging evidence for a role of the endoplasmic reticulum in enabling a cell to sense and respond to changes in the extracellular mechanical environment.