Epidermal growth factor receptors (EGFRs) destined for lysosomal degradation are sorted in the early endosomal vacuole into small, lumenal vesicles that arise by inward budding of the limiting membrane. We have previously shown that, before their incorporation into internal vesicles, EGFRs are concentrated in flat bilayered-clathrin coats on the endosomal vacuole. Here, we show that an ATPase-deficient mutant of hVPS4 (hVPS4EQ) increases the association of bilayered coats with endosomal vacuoles. In addition, hVPS4EQ leads to a reduction in the number of internal vesicles in early and late endosomal vacuoles, and retention of EGFRs at the limiting membrane. Interestingly, hVPS4EQ was predominantly found on non-coated regions of endosomal vacuoles, often at the rim of a coated area. In line with published data on Vps4p function in yeast, these results suggest that hVPS4 is involved in the release of components of the bilayered coat from the endosomal membrane. Moreover, our data suggest that disassembly of the coat is required for the formation of internal vesicles.
ATPase-deficient hVPS4 impairs formation of internal endosomal vesicles and stabilizes bilayered clathrin coats on endosomal vacuoles Available to Purchase
Martin Sachse, Ger J. Strous, Judith Klumperman; ATPase-deficient hVPS4 impairs formation of internal endosomal vesicles and stabilizes bilayered clathrin coats on endosomal vacuoles. J Cell Sci 1 April 2004; 117 (9): 1699–1708. doi: https://doi.org/10.1242/jcs.00998
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Interviews with Biologists @ 100 conference speakers

Explore our interviews with keynote speakers from the Biologists @ 100 conference, hosted to celebrate our publisher’s 100th anniversary, where we discuss climate change and biodiversity with Hans-Otto Pörtner and Jane Francis, health and disease with Charles Swanton and Sadaf Farooqi, and emerging technologies with Manu Prakash and Jennifer Lippincott-Schwartz.
Introducing our new Associate Editors

In this Editorial, JCS Editor-in-Chief Michael Way welcomes five new Associate Editors to the JCS team. These Associate Editors will expand our support for the wider cell biology community and handle articles in immune cell biology, proteostasis, imaging and image analysis, plant cell biology, and stem cell biology and modelling.
The spatial choreography of mRNA biosynthesis

In their Review, André Ventura-Gomes and Maria Carmo-Fonseca detail the latest research progress and technological advancements that are helping to unlock how nuclear organisation underpins control of gene transcription and pre-mRNA splicing.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 6 June 2025 (decision by week commencing 28 July 2025) and 5 September 2025 (decision by week commencing 20 October 2025).
The emerging roles of the endoplasmic reticulum in mechanosensing and mechanotransduction

In their Review, Jonathan Townson and Cinzia Progida highlight recently emerging evidence for a role of the endoplasmic reticulum in enabling a cell to sense and respond to changes in the extracellular mechanical environment.