The growth and survival of the preimplantation mammalian embryo may be regulated by several autocrine trophic factors that have redundant or overlapping actions. One of the earliest trophic factors to be produced is embryo-derived platelet-activating factor (1-O-alky-2-acetyl-sn-glyceryl-3-phosphocholine). The addition of platelet-activating factor to embryo culture media exerted a trophic effect, but structurally related lipids (3-O-alky-2-acetyl-sn-glyceryl-1-phosphocholine, 1-O-alky-sn-glyceryl-3-phosphocholine, octadecyl-phosphocholine) had no effect. Platelet-activating factor induced a pertussis toxin-sensitive [Ca2+]i transient in two-cell embryos that did not occur in platelet-activating factor-receptor null (Pafr–/–) genotype embryos. Fewer Pafr–/– mouse zygotes developed to the blastocyst stage in vitro compared with Pafr+/+ zygotes (P<0.02), those that developed to blastocysts had fewer cells (P<0.001) and more cells with fragmented nuclei (P<0.001). The inhibition of 1-O-phosphatidylinositol 3-kinase (LY294002 (3 μM and 15 μM) and wortmannin (10 nM and 50 nM)) caused a dose-dependent inhibition of platelet-activating factor-induced [Ca2+]i transients (P<0.001). The two-cell embryo expressed 1-O-phosphatidylinositol 3-kinase catalytic subunits p110α, β, γ and δ, and regulatory subunits p85α and β. LY294002 and wortmannin each caused a significant reduction in the proportion of embryos developing to the morula and blastocyst stages in vitro, reduced the number of cells within each blastocyst, and significantly increased the proportion of cells in blastocysts with fragmented nuclei. The results indicate that embryo-derived platelet-activating factor (and other embryotrophic factors) act through its membrane receptor to enhance embryo survival through a 1-O-phosphatidylinositol 3-kinase-dependent survival pathway.
Trophic signals acting via phosphatidylinositol-3 kinase are required for normal pre-implantation mouse embryo development
D. P. Lu, V. Chandrakanthan, A. Cahana, S. Ishii, C. O'Neill; Trophic signals acting via phosphatidylinositol-3 kinase are required for normal pre-implantation mouse embryo development. J Cell Sci 15 March 2004; 117 (8): 1567–1576. doi: https://doi.org/10.1242/jcs.00991
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Interviews with Biologists @ 100 conference speakers

Explore our interviews with keynote speakers from the Biologists @ 100 conference, hosted to celebrate our publisher’s 100th anniversary, where we discuss climate change and biodiversity with Hans-Otto Pörtner and Jane Francis, health and disease with Charles Swanton and Sadaf Farooqi, and emerging technologies with Manu Prakash and Jennifer Lippincott-Schwartz.
Introducing our new Associate Editors

In this Editorial, JCS Editor-in-Chief Michael Way welcomes five new Associate Editors to the JCS team. These Associate Editors will expand our support for the wider cell biology community and handle articles in immune cell biology, proteostasis, imaging and image analysis, plant cell biology, and stem cell biology and modelling.
The spatial choreography of mRNA biosynthesis

In their Review, André Ventura-Gomes and Maria Carmo-Fonseca detail the latest research progress and technological advancements that are helping to unlock how nuclear organisation underpins control of gene transcription and pre-mRNA splicing.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 6 June 2025 (decision by week commencing 28 July 2025) and 5 September 2025 (decision by week commencing 20 October 2025).
The emerging roles of the endoplasmic reticulum in mechanosensing and mechanotransduction

In their Review, Jonathan Townson and Cinzia Progida highlight recently emerging evidence for a role of the endoplasmic reticulum in enabling a cell to sense and respond to changes in the extracellular mechanical environment.