A complex network of interactions between the stroma, the extracellular matrix and the epithelium drives mammary gland development and function. Two main assumptions in chemical carcinogenesis of the mammary gland have been that carcinogens induce neoplasia by causing mutations in the DNA of the epithelial cells and that the alterations of tissue architecture observed in neoplasms are a consequence of this primary mutational event. Here, we use a rat mammary tissue recombination model and the chemical carcinogen N-nitrosomethylurea (NMU) to determine whether the primary target of the carcinogen is the epithelium, the stroma or both tissue compartments. Mammary epithelial cells were exposed in vitro either to the carcinogen or vehicle before being transplanted into the cleared fat pads of rats exposed to carcinogen or vehicle. We observed that neoplastic transformation of these mammary epithelial cells occurred only when the stroma was exposed in vivo to NMU, regardless of whether or not the epithelial cells were exposed to the carcinogen. Mammary epithelial cells exposed in vitro to the carcinogen formed phenotypically normal ducts when injected into a non-treated stroma. Mutation in the Ha-ras-1 gene did not correlate with initiation of neoplasia. Not only was it often found in both cleared mammary fat pads of vehicle-treated animals and intact mammary glands of untreated animals, but it was also absent in some tumors. Our results suggest that the stroma is a crucial target of the carcinogen and that mutation in the Ha-ras-1 gene is neither necessary nor sufficient for tumor initiation.
The stroma as a crucial target in rat mammary gland carcinogenesis Available to Purchase
Maricel V. Maffini, Ana M. Soto, Janine M. Calabro, Angelo A. Ucci, Carlos Sonnenschein; The stroma as a crucial target in rat mammary gland carcinogenesis. J Cell Sci 15 March 2004; 117 (8): 1495–1502. doi: https://doi.org/10.1242/jcs.01000
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
JCS fast-track option

Have a paper that has been reviewed elsewhere? JCS is pleased to consider such manuscripts for fast-tracked decision making. Send us your manuscript together with the full set of reviews and decision letters, and we will make an initial decision within one week.
Special Issue – Cell Biology of Mitochondria

Our special issue on ‘Cell Biology of Mitochondria’ is now complete. Explore this issue and read the Editorial from our Guest Editors Ana J. García-Sáez and Heidi McBride.
Save the date – Imaging Cell Dynamics

We are delighted to announce that we will be hosting a 2026 Imaging Cell Dynamics meeting. This meeting will provide a unique opportunity to bring together experts working at the interface between cell biology and imaging. Save the date for 11-14 May 2026 and register for more information.
Origin and evolution of mitochondrial inner membrane composition

In this Review, Kailash Venkatraman and colleagues provide an examination of the morphological similarities between prokaryotic intracytoplasmic membranes and mitochondrial inner membranes, and whether cristae evolution has driven specialisation of the mitochondrial lipidome.
Resolution in super-resolution microscopy
Super-resolution microscopy (SRM) has emerged as a powerful tool for biological discovery. In this Perspective, Kirti Prakash and colleagues compile expert opinions on crucial, yet often overlooked, aspects of SRM that are essential for maximising its benefits and advancing the field.
Help shape your future publishing experience

We are gathering feedback from our readers, authors and reviewers, to help us shape the next 100 years and to keep offering a publishing experience that truly supports our community. Please have your say by completing our community survey. Survey closes on 25 June.