The Na+/I- symporter (NIS) is a key plasma membrane glycoprotein that mediates active iodide (I-) transport in the thyroid and other tissues. Since isolation of the cDNA encoding NIS (G. Dai, O. Levy, and N. Carrasco (1996) Nature 379, 458-460), ten mutations in NIS have been identified as causes of congenital iodide transport defect (ITD). Two of these mutations (T354P and G395R) have been thoroughly characterized at the molecular level. Both mutant NIS proteins are inactive but normally expressed and correctly targeted to the plasma membrane. The hydroxyl group at the β-carbon of residue 354 is essential for NIS function, whereas the presence of a charged or large side-chain at position 395 interferes with NIS function. We report the extensive molecular analysis of the Q267E mutation in COS-7 cells transfected with rat or human Q267E NIS cDNA constructs. We used site-directed mutagenesis to engineer various residue substitutions into position 267. In contrast to previous suggestions that Q267E NIS was inactive, possibly because of a trafficking defect, we conclusively show that Q267E NIS is modestly active and properly targeted to the plasma membrane. Q267E NIS exhibited lower Vmax values for I- than wild-type NIS, suggesting that the decreased level of activity of Q267E NIS is due to a lower catalytic rate. That Q267E NIS retains even partial activity sets this ITD-causing mutant apart from T354P and G395R NIS. The presence of charged residues (of any polarity) other than Glu at position 267 rendered NIS inactive without affecting its expression or targeting, but substitution with neutral residues at this position was compatible with partial activity.
The Q267E mutation in the sodium/iodide symporter (NIS) causes congenital iodide transport defect (ITD) by decreasing the NIS turnover number Available to Purchase
Antonio De la Vieja, Christopher S. Ginter, Nancy Carrasco; The Q267E mutation in the sodium/iodide symporter (NIS) causes congenital iodide transport defect (ITD) by decreasing the NIS turnover number. J Cell Sci 15 February 2004; 117 (5): 677–687. doi: https://doi.org/10.1242/jcs.00898
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
JCS fast-track option

Have a paper that has been reviewed elsewhere? JCS is pleased to consider such manuscripts for fast-tracked decision making. Send us your manuscript together with the full set of reviews and decision letters, and we will make an initial decision within one week.
Special Issue – Cell Biology of Mitochondria

Our special issue on ‘Cell Biology of Mitochondria’ is now complete. Explore this issue and read the Editorial from our Guest Editors Ana J. García-Sáez and Heidi McBride.
Save the date – Imaging Cell Dynamics

We are delighted to announce that we will be hosting a 2026 Imaging Cell Dynamics meeting. This meeting will provide a unique opportunity to bring together experts working at the interface between cell biology and imaging. Save the date for 11-14 May 2026 and register for more information.
Origin and evolution of mitochondrial inner membrane composition

In this Review, Kailash Venkatraman and colleagues provide an examination of the morphological similarities between prokaryotic intracytoplasmic membranes and mitochondrial inner membranes, and whether cristae evolution has driven specialisation of the mitochondrial lipidome.
Resolution in super-resolution microscopy
Super-resolution microscopy (SRM) has emerged as a powerful tool for biological discovery. In this Perspective, Kirti Prakash and colleagues compile expert opinions on crucial, yet often overlooked, aspects of SRM that are essential for maximising its benefits and advancing the field.