Condensin is a protein complex associated with mitotic chromosomes that has been implicated in chromosome condensation. In vertebrates, two types of condensin complexes have recently been identified, called condensin I and II. Here, we show that in mammalian cells condensin II associates with chromatin in prophase, in contrast to condensin I which is cytoplasmic and can thus interact with chromosomes only after nuclear envelope breakdown. RNA interference experiments in conjunction with imaging of live and fixed cells revealed that condensin II is required for chromosome condensation in early prophase, whereas condensin I appears to be dispensable at this stage. By contrast, condensin I is required for the complete dissociation of cohesin from chromosome arms, for chromosome shortening and for normal timing of progression through prometaphase and metaphase, whereas normal condensin II levels are dispensable for these processes. After depletion of both condensin complexes, the onset of chromosome condensation is delayed until the end of prophase, but is then initiated rapidly before nuclear envelope breakdown. These results reveal that condensin II and I associate with chromosomes sequentially and have distinct functions in mitotic chromosome assembly.
Distinct functions of condensin I and II in mitotic chromosome assembly Available to Purchase
These authors contributed equally to this work
Toru Hirota, Daniel Gerlich, Birgit Koch, Jan Ellenberg, Jan-Michael Peters; Distinct functions of condensin I and II in mitotic chromosome assembly. J Cell Sci 15 December 2004; 117 (26): 6435–6445. doi: https://doi.org/10.1242/jcs.01604
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
JCS fast-track option

Have a paper that has been reviewed elsewhere? JCS is pleased to consider such manuscripts for fast-tracked decision making. Send us your manuscript together with the full set of reviews and decision letters, and we will make an initial decision within one week.
Special Issue – Cell Biology of Mitochondria

Our special issue on ‘Cell Biology of Mitochondria’ is now complete. Explore this issue and read the Editorial from our Guest Editors Ana J. García-Sáez and Heidi McBride.
Save the date – Imaging Cell Dynamics

We are delighted to announce that we will be hosting a 2026 Imaging Cell Dynamics meeting. This meeting will provide a unique opportunity to bring together experts working at the interface between cell biology and imaging. Save the date for 11-14 May 2026 and register for more information.
Origin and evolution of mitochondrial inner membrane composition

In this Review, Kailash Venkatraman and colleagues provide an examination of the morphological similarities between prokaryotic intracytoplasmic membranes and mitochondrial inner membranes, and whether cristae evolution has driven specialisation of the mitochondrial lipidome.
Resolution in super-resolution microscopy
Super-resolution microscopy (SRM) has emerged as a powerful tool for biological discovery. In this Perspective, Kirti Prakash and colleagues compile expert opinions on crucial, yet often overlooked, aspects of SRM that are essential for maximising its benefits and advancing the field.