Hsp47 is an endoplasmic reticulum (ER)-resident molecular chaperone that is specific for collagen. In Hsp47–/– mouse embryos at 9.5 days postcoitus (dpc), immunostaining indicated the absence of type IV collagen, but not of laminin and nidogen-1, in the basement membrane (BM). Electron immunomicroscopy revealed accumulation of type IV collagen in dilated ERs, but not in the BM of Hsp47–/– embryos, whereas it was only present in the BM in Hsp47+/+ embryos. The BM structures stained with anti-laminin and anti-nidogen-1 antibody became disrupted in Hsp47–/– embryos at 10.5 dpc. Thus, in the absence of type IV collagen in the BM owing to the lack of Hsp47, the structure of the BM cannot be maintained during the dramatic morphological changes that take place around 10.5 dpc. Type IV collagen is therefore indispensable for the maintenance of BM structures during the late-stage development of mouse embryos, although not essential for the initial formation of the BM. Just before the death of Hsp47–/– embryos, DNA fragmentation typical of apoptosis was observed at 10.5 dpc together with significantly upregulated CHOP mRNA expression. ER stress caused by the accumulation of misfolded collagen may have induced apoptosis in Hsp47-knockout embryos through the upregulation of CHOP.
Accumulation of type IV collagen in dilated ER leads to apoptosis in Hsp47-knockout mouse embryos via induction of CHOP Available to Purchase
Toshihiro Marutani, Akitsugu Yamamoto, Naoko Nagai, Hiroshi Kubota, Kazuhiro Nagata; Accumulation of type IV collagen in dilated ER leads to apoptosis in Hsp47-knockout mouse embryos via induction of CHOP. J Cell Sci 15 November 2004; 117 (24): 5913–5922. doi: https://doi.org/10.1242/jcs.01514
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
JCS fast-track option

Have a paper that has been reviewed elsewhere? JCS is pleased to consider such manuscripts for fast-tracked decision making. Send us your manuscript together with the full set of reviews and decision letters, and we will make an initial decision within one week.
Special Issue – Cell Biology of Mitochondria

Our special issue on ‘Cell Biology of Mitochondria’ is now complete. Explore this issue and read the Editorial from our Guest Editors Ana J. García-Sáez and Heidi McBride.
Save the date – Imaging Cell Dynamics

We are delighted to announce that we will be hosting a 2026 Imaging Cell Dynamics meeting. This meeting will provide a unique opportunity to bring together experts working at the interface between cell biology and imaging. Save the date for 11-14 May 2026 and register for more information.
Origin and evolution of mitochondrial inner membrane composition

In this Review, Kailash Venkatraman and colleagues provide an examination of the morphological similarities between prokaryotic intracytoplasmic membranes and mitochondrial inner membranes, and whether cristae evolution has driven specialisation of the mitochondrial lipidome.
Resolution in super-resolution microscopy
Super-resolution microscopy (SRM) has emerged as a powerful tool for biological discovery. In this Perspective, Kirti Prakash and colleagues compile expert opinions on crucial, yet often overlooked, aspects of SRM that are essential for maximising its benefits and advancing the field.