Dd-TRAP1 is a Dictyostelium homologue of tumor necrosis factor receptor-associated protein 1 (TRAP-1). Dd-TRAP1 is located in the cortex of cells growing at a low density, but was found to be translocated to mitochondria with the help of a novel prestarvation factor that was accumulated in growth medium along with increased cell densities. The knockdown mutant of Dd-TRAP1 (TRAP1-RNAi cells) exhibited a significant defect in prestarvation response. Although TRAP1-RNAi cells showed normal expressions of classical prestarvation genes [dscA (discoidin I) and car1 (carA; cAMP receptor)], the expression of differentiation-associated genes (dia1 and dia3) induced by the prestarvation response were markedly repressed. By contrast, transformants overexpressing Dd-TRAP1 showed an early prestarvation response and also increased expression of dia1 and dia3 in a cell-density-dependent manner. Importantly, introduction of Dd-TRAP1 antibody into D. discoideum Ax-2 cells by electroporation inhibited the translocation of Dd-TRAP1 from the cortex to mitochondria and greatly inhibited the initiation of differentiation. Taken together, these results indicate that Dd-TRAP1 is translocated to mitochondria by sensing the cell density in growth medium and enhances the early developmental program through a novel prestarvation response.
Translocation of the Dictyostelium TRAP1 homologue to mitochondria induces a novel prestarvation response Available to Purchase
Present address: Department of Neuroscience (D13), Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita City, Osaka 565-0871, Japan
Tsuyoshi Morita, Aiko Amagai, Yasuo Maeda; Translocation of the Dictyostelium TRAP1 homologue to mitochondria induces a novel prestarvation response. J Cell Sci 15 November 2004; 117 (24): 5759–5770. doi: https://doi.org/10.1242/jcs.01499
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
JCS fast-track option

Have a paper that has been reviewed elsewhere? JCS is pleased to consider such manuscripts for fast-tracked decision making. Send us your manuscript together with the full set of reviews and decision letters, and we will make an initial decision within one week.
Special Issue – Cell Biology of Mitochondria

Our special issue on ‘Cell Biology of Mitochondria’ is now complete. Explore this issue and read the Editorial from our Guest Editors Ana J. García-Sáez and Heidi McBride.
Save the date – Imaging Cell Dynamics

We are delighted to announce that we will be hosting a 2026 Imaging Cell Dynamics meeting. This meeting will provide a unique opportunity to bring together experts working at the interface between cell biology and imaging. Save the date for 11-14 May 2026 and register for more information.
Origin and evolution of mitochondrial inner membrane composition

In this Review, Kailash Venkatraman and colleagues provide an examination of the morphological similarities between prokaryotic intracytoplasmic membranes and mitochondrial inner membranes, and whether cristae evolution has driven specialisation of the mitochondrial lipidome.
Resolution in super-resolution microscopy
Super-resolution microscopy (SRM) has emerged as a powerful tool for biological discovery. In this Perspective, Kirti Prakash and colleagues compile expert opinions on crucial, yet often overlooked, aspects of SRM that are essential for maximising its benefits and advancing the field.