When embryonic stem cells are allowed to aggregate, the outer layer of the aggregated spheres (referred to as embryoid bodies) differentiates into primitive endoderm. This initial specification of cell lineage facilitates further differentiation of the inner mass of the embryoid bodies. These processes are considered to recapitulate early embryonic development from the blastocyst stage to the egg-cylinder stage. Formation of the primitive endoderm layer in the embryoid bodies was induced solely by aggregation of embryonic stem cells, in the presence of leukemia inhibitory factor/STAT3 and serum/BMP4, which were considered to be sufficient for embryonic stem cell self-renewal. Interestingly, cell aggregation by itself induced Nanog repression at the outer layer, which was essential for aggregation-induced primitive endoderm formation. These data illustrate aggregation-based cell-fate specification during early embryonic development, when downregulation of Nanog plays a crucial role.
Aggregation of embryonic stem cells induces Nanog repression and primitive endoderm differentiation Available to Purchase
Takashi Hamazaki, Masahiro Oka, Shinya Yamanaka, Naohiro Terada; Aggregation of embryonic stem cells induces Nanog repression and primitive endoderm differentiation. J Cell Sci 1 November 2004; 117 (23): 5681–5686. doi: https://doi.org/10.1242/jcs.01489
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Interviews with Biologists @ 100 conference speakers

Explore our interviews with keynote speakers from the Biologists @ 100 conference, hosted to celebrate our publisher’s 100th anniversary, where we discuss climate change and biodiversity with Hans-Otto Pörtner and Jane Francis, health and disease with Charles Swanton and Sadaf Farooqi, and emerging technologies with Manu Prakash and Jennifer Lippincott-Schwartz.
Introducing our new Associate Editors

In this Editorial, JCS Editor-in-Chief Michael Way welcomes five new Associate Editors to the JCS team. These Associate Editors will expand our support for the wider cell biology community and handle articles in immune cell biology, proteostasis, imaging and image analysis, plant cell biology, and stem cell biology and modelling.
The spatial choreography of mRNA biosynthesis

In their Review, André Ventura-Gomes and Maria Carmo-Fonseca detail the latest research progress and technological advancements that are helping to unlock how nuclear organisation underpins control of gene transcription and pre-mRNA splicing.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 6 June 2025 (decision by week commencing 28 July 2025) and 5 September 2025 (decision by week commencing 20 October 2025).
The emerging roles of the endoplasmic reticulum in mechanosensing and mechanotransduction

In their Review, Jonathan Townson and Cinzia Progida highlight recently emerging evidence for a role of the endoplasmic reticulum in enabling a cell to sense and respond to changes in the extracellular mechanical environment.