The functional role of the peroxisomal membrane as a permeability barrier to metabolites has been a matter of controversy for more than four decades. The initial conception, claiming free permeability of the membrane to small solute molecules, has recently been challenged by several observations suggesting that the peroxisomal membrane forms a closed compartment. We have characterized in vitro the permeability of rat liver peroxisomal membrane. Our results indicate that the membrane allows free access into peroxisomes for small hydrophilic molecules, such as substrates for peroxisomal enzymes (glycolate, urate), but not to more bulky cofactors (NAD/H, NADP/H, CoA). Although access for cofactors is not prevented completely by the membrane, the membrane barrier severely restricts their rate of entry into peroxisomes. The data lead to conclusion that, in vivo, peroxisomes may possess their own pool of cofactors, while they share a common pool of small metabolites with the cytoplasm. The results also indicate that molecular size plays an important role in in vivo distinction between cofactors and metabolic intermediates.

You do not currently have access to this content.