3′-5′ cyclic adenosine monophosphate (cAMP)-dependent protein kinase, PKA, is thought to be a key enzyme that controls prophase arrest in vertebrate oocytes. It has long been established that overexpression of the catalytic subunit of PKA inhibits hormone-induced frog oocyte maturation whereas overexpression of the regulatory subunits induces hormone-independent oocyte maturation. However, the activities of endogenous oocyte PKA, or its regulation by the maturation-inducing hormone progesterone, have never been directly demonstrated in frog oocytes. We have developed a novel expressed substrate for PKA in live oocytes by constructing a fusion protein containing an N-terminal myristylation sequence (derived from the Src tyrosine kinase) followed by an antigenic epitope tag and a substrate motif (the C-terminal cytoplasmic domain of β2 adrenergic receptor). Following mRNA injection, the phosphorylation status of the substrate was determined by two-dimensional electrophoresis followed by epitope immunoblotting, or alternatively by SDS-PAGE followed by immunoblotting using antibodies specifically recognizing the PKA-phosphorylated form of the substrate. In prophase oocytes, the expressed protein, myr-HA-β2AR-C, was fully phosphorylated on a single PKA site (Ser346 of human β2 adrenergic receptor). Within one hour of the addition of progesterone, the PKA site became mostly dephosphorylated. No re-phosphorylation of the PKA site, and therefore no reactivation of PKA, was observed throughout the entire maturation process. To demonstrate the generality of this PKA substrate, we analyzed its phosphorylation status in COS-7 cells following transfection. We show that dibutyryl cAMP rapidly stimulates phosphorylation of the PKA site. These results represent the first biochemical demonstration of regulation of endogenous Xenopus oocyte PKA by progesterone. Furthermore, myr-HA-β2AR-C should be widely adaptable as an in vivo PKA activity indicator.
Progesterone inhibits protein kinase A (PKA) in Xenopus oocytes: demonstration of endogenous PKA activities using an expressed substrate
Jing Wang, X. Johné Liu; Progesterone inhibits protein kinase A (PKA) in Xenopus oocytes: demonstration of endogenous PKA activities using an expressed substrate. J Cell Sci 1 October 2004; 117 (21): 5107–5116. doi: https://doi.org/10.1242/jcs.01383
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Call for papers - Cilia and Flagella: from Basic Biology to Disease

We are welcoming submissions for our upcoming special issue: Cilia and Flagella: from Basic Biology to Disease. This issue will be coordinated by two Guest Editors: Pleasantine Mill (University of Edinburgh) and Lotte Pedersen (University of Copenhagen). Extended submission deadline: 31 March 2025.
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about Journal of Cell Science’s journey and explore the history of each of our sister journals: Development, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open.
Introducing our new Associate Editors

In this Editorial, JCS Editor-in-Chief Michael Way welcomes five new Associate Editors to the JCS team. These Associate Editors will expand our support for the wider cell biology community and handle articles in immune cell biology, proteostasis, imaging and image analysis, plant cell biology, and stem cell biology and modelling.
Diversity of microtubule arrays in animal cells at a glance

In this Cell Science at a Glance article, Emma van Grinsven and Anna Akhmanova provide an overview of the diverse microtubule arrays present in differentiated animal cells and discuss how these arrays form and function.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 7 March 2025 (decision by week commencing 21 April 2025) and 6 June 2025 (decision by week commencing 28 July 2025).