Claudins are cell adhesion molecules working at tight junctions (TJs) that are directly involved in compartmentalization in multicellular organisms. The cochlea includes a rather peculiar compartment filled with endolymph. This compartment is characterized by high K+ concentration (∼150 mM) and a positive endocochlear potential (∼90 mV; EP), both indispensable conditions for cochlear hair cells to transduce acoustic stimuli to electrical signals. These conditions are thought to be generated by the stria vascularis, which is adjacent to the endolymph compartment. The stria vascularis itself constitutes an isolated compartment delineated by two epithelial barriers, marginal and basal cell layers. Because TJs of basal cells are primarily composed of claudin-11, claudin-11-deficient (Cld11-/-) mice were generated with an expectation that the compartmentalization in stria vascularis in these mice would be affected. Auditory brainstem response measurements revealed that Cld11-/- mice suffered from deafness; although no obvious gross morphological malformations were detected in Cld11-/- cochlea, freeze-fracture replica electron microscopy showed that TJs disappeared from basal cells of the stria vascularis. In good agreement with this, tracer experiments showed that the basal cell barrier was destroyed without affecting the marginal cell barrier. Importantly, in the endolymph compartment of Cld11-/- cochlea, the K+ concentration was maintained around the normal level (∼150 mM), whereas the EP was suppressed down to ∼30 mV. These findings indicated that the establishment of the stria vascularis compartment, especially the basal cell barrier, is indispensable for hearing ability through the generation/maintenance of EP but not of a high K+ concentration in the endolymph.
Compartmentalization established by claudin-11-based tight junctions in stria vascularis is required for hearing through generation of endocochlear potential
These authors contributed equally to this work
Shin-ichiro Kitajiri, Tatsuo Miyamoto, Akihito Mineharu, Noriyuki Sonoda, Kyoko Furuse, Masaki Hata, Hiroyuki Sasaki, Yoshiaki Mori, Takahiro Kubota, Juichi Ito, Mikio Furuse, Shoichiro Tsukita; Compartmentalization established by claudin-11-based tight junctions in stria vascularis is required for hearing through generation of endocochlear potential. J Cell Sci 1 October 2004; 117 (21): 5087–5096. doi: https://doi.org/10.1242/jcs.01393
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Call for papers - Cilia and Flagella: from Basic Biology to Disease

We are welcoming submissions for our upcoming special issue: Cilia and Flagella: from Basic Biology to Disease. This issue will be coordinated by two Guest Editors: Pleasantine Mill (University of Edinburgh) and Lotte Pedersen (University of Copenhagen). Extended submission deadline: 31 March 2025.
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about Journal of Cell Science’s journey and explore the history of each of our sister journals: Development, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open.
Introducing our new Associate Editors

In this Editorial, JCS Editor-in-Chief Michael Way welcomes five new Associate Editors to the JCS team. These Associate Editors will expand our support for the wider cell biology community and handle articles in immune cell biology, proteostasis, imaging and image analysis, plant cell biology, and stem cell biology and modelling.
Diversity of microtubule arrays in animal cells at a glance

In this Cell Science at a Glance article, Emma van Grinsven and Anna Akhmanova provide an overview of the diverse microtubule arrays present in differentiated animal cells and discuss how these arrays form and function.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 7 March 2025 (decision by week commencing 21 April 2025) and 6 June 2025 (decision by week commencing 28 July 2025).