In Rat-1 fibroblasts, v-Src causes a profound remodelling of cortical actin cytoskeleton. This transformation includes membrane ruffling, a hallmark of the leading edge in migrating cells, and results from activation of phosphoinositide 3-kinase (PI 3-kinase), phospholipase C (PLC) and phospholipase D (PLD). We therefore reexamined whether motility is constitutively triggered by v-Src and studied whether this response is controlled by the same signalling pathway. The study was performed using Rat-1/tsLA29 and MDCK/tsLA31 cells, each harbouring a different thermosensitive v-Src kinase, active at 34°C but inactivated at 40°C. In both cell lines, overnight v-Src activation induced transformation and accelerated spontaneous motility by approximately twofold, as evidenced by wound-healing assay and by single-cell track, time-lapse recording in Dunn chambers. Inhibitors of PI 3-kinase, PLC and PLD selectively abrogated acceleration of motility by v-Src. Since mechanisms that co-ordinate spontaneous, as distinct from oriented, cell migration are separable, we further analysed in Dunn chambers chemotactic response of Rat-1/tsLA29 cells to PDGF and of MDCK/tsLA31 cells to EGF. In both cases, v-Src decreased the steady-state level of growth factor receptors at the cell surface twofold, and abrogated movement directionality at comparable level of occupancy as in non-transformed cells. The burst of pinocytosis in response to growth factors was also abolished by v-Src. Altogether, these results indicate that v-Src triggers motility in a PI 3-kinase-, PLC- and PLD-dependent manner, but abrogates directionality by suppressing polarised signalling downstream of growth factor receptors.
v-Src accelerates spontaneous motility via phosphoinositide 3-kinase, phospholipase C and phospholipase D, but abrogates chemotaxis in Rat-1 and MDCK cells Available to Purchase
Anna Platek, Marcel Mettlen, Isabelle Camby, Robert Kiss, Mustapha Amyere, Pierre J. Courtoy; v-Src accelerates spontaneous motility via phosphoinositide 3-kinase, phospholipase C and phospholipase D, but abrogates chemotaxis in Rat-1 and MDCK cells. J Cell Sci 15 September 2004; 117 (20): 4849–4861. doi: https://doi.org/10.1242/jcs.01359
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
JCS fast-track option

Have a paper that has been reviewed elsewhere? JCS is pleased to consider such manuscripts for fast-tracked decision making. Send us your manuscript together with the full set of reviews and decision letters, and we will make an initial decision within one week.
Special Issue – Cell Biology of Mitochondria

Our special issue on ‘Cell Biology of Mitochondria’ is now complete. Explore this issue and read the Editorial from our Guest Editors Ana J. García-Sáez and Heidi McBride.
Save the date – Imaging Cell Dynamics

We are delighted to announce that we will be hosting a 2026 Imaging Cell Dynamics meeting. This meeting will provide a unique opportunity to bring together experts working at the interface between cell biology and imaging. Save the date for 11-14 May 2026 and register for more information.
Origin and evolution of mitochondrial inner membrane composition

In this Review, Kailash Venkatraman and colleagues provide an examination of the morphological similarities between prokaryotic intracytoplasmic membranes and mitochondrial inner membranes, and whether cristae evolution has driven specialisation of the mitochondrial lipidome.
Resolution in super-resolution microscopy
Super-resolution microscopy (SRM) has emerged as a powerful tool for biological discovery. In this Perspective, Kirti Prakash and colleagues compile expert opinions on crucial, yet often overlooked, aspects of SRM that are essential for maximising its benefits and advancing the field.
Help shape your future publishing experience

We are gathering feedback from our readers, authors and reviewers, to help us shape the next 100 years and to keep offering a publishing experience that truly supports our community. Please have your say by completing our community survey. Survey closes on 25 June.