The small GTP binding protein Rab7 has a role in the late endocytic pathway and lysosome biogenesis. The role of mammalian Rab7 in autophagy is, however, unknown. We have addressed this by inhibiting Rab7 function with RNA interference and overexpression of dominant negative Rab7. We show here that Rab7 was needed for the formation of preferably perinuclear, large aggregates, where the autophagosome marker LC3 colocalised with Rab7 and late endosomal and lysosomal markers. By electron microscopy we showed that these large aggregates corresponded to autophagic vacuoles surrounding late endosomal or lysosomal vesicles. Our experiments with quantitative electron microscopy showed that Rab7 was not needed for the initial maturation of early autophagosomes to late autophagic vacuoles, but that it participated in the final maturation of late autophagic vacuoles. Finally, we showed that the recruitment of Rab7 to autophagic vacuoles was retarded in cells deficient in the lysosomal membrane proteins Lamp1 and Lamp2, which we have recently shown to accumulate late autophagic vacuoles during starvation. In conclusion, our results showed a role for Rab7 in the final maturation of late autophagic vacuoles.
Role for Rab7 in maturation of late autophagic vacuoles Available to Purchase
Stefanie Jäger, Cecilia Bucci, Isei Tanida, Takashi Ueno, Eiki Kominami, Paul Saftig, Eeva-Liisa Eskelinen; Role for Rab7 in maturation of late autophagic vacuoles. J Cell Sci 15 September 2004; 117 (20): 4837–4848. doi: https://doi.org/10.1242/jcs.01370
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
JCS fast-track option

Have a paper that has been reviewed elsewhere? JCS is pleased to consider such manuscripts for fast-tracked decision making. Send us your manuscript together with the full set of reviews and decision letters, and we will make an initial decision within one week.
Special Issue – Cell Biology of Mitochondria

Our special issue on ‘Cell Biology of Mitochondria’ is now complete. Explore this issue and read the Editorial from our Guest Editors Ana J. García-Sáez and Heidi McBride.
Save the date – Imaging Cell Dynamics

We are delighted to announce that we will be hosting a 2026 Imaging Cell Dynamics meeting. This meeting will provide a unique opportunity to bring together experts working at the interface between cell biology and imaging. Save the date for 11-14 May 2026 and register for more information.
Origin and evolution of mitochondrial inner membrane composition

In this Review, Kailash Venkatraman and colleagues provide an examination of the morphological similarities between prokaryotic intracytoplasmic membranes and mitochondrial inner membranes, and whether cristae evolution has driven specialisation of the mitochondrial lipidome.
Resolution in super-resolution microscopy
Super-resolution microscopy (SRM) has emerged as a powerful tool for biological discovery. In this Perspective, Kirti Prakash and colleagues compile expert opinions on crucial, yet often overlooked, aspects of SRM that are essential for maximising its benefits and advancing the field.
Help shape your future publishing experience

We are gathering feedback from our readers, authors and reviewers, to help us shape the next 100 years and to keep offering a publishing experience that truly supports our community. Please have your say by completing our community survey. Survey closes on 25 June.