Gap junctional intercellular communication is involved in the control of cell proliferation and differentiation. Connexin33, a member of the multi-gene family of gap junction proteins, exerts an inhibitory effect on intercellular communication when injected into Xenopus oocytes. However, the molecular mechanisms involved remain to be elucidated. Our results show that connexin33 was only expressed within the seminiferous tubules in the testis. In contrast to the majority of connexins, connexin33 was unphosphorylated. Immunoprecipitation experiments revealed that connexin33 physically interacted with connexin43, mainly with the phosphorylated P1 isoform of connexin43 but not with connexin26 and connexin32, two other connexins expressed in the tubular compartment. In Sertoli cells and COS-7 cells, connexin43 was located at the plasma membrane, whereas in connexin33 transfected cells, the specific association of connexin33/43 was sequestered in the intracellular compartment. High-resolution fluorescent deconvolution microscopy indicated that the connexin33/43 complex was mainly found within early endosomes. Sequestration of connexin33/43 complex was associated with a complete inhibition of the gap junctional coupling between adjacent cells. These findings provide the first evidence of a new mechanistic model by which a native connexin, exerting a dominant negative effect, can inhibit gap junctional intercellular communication. In the testis, connexin33 could exert a specific role on germ cell proliferation by suppressing the regulatory effect of connexin43.
Dominant negative effect of connexin33 on gap junctional communication is mediated by connexin43 sequestration Available to Purchase
Céline Fiorini, Baharia Mograbi, Laurent Cronier, Isabelle Bourget, Xavier Decrouy, Marielle Nebout, Bernard Ferrua, André Malassine, Michel Samson, Patrick Fénichel, Dominique Segretain, Georges Pointis; Dominant negative effect of connexin33 on gap junctional communication is mediated by connexin43 sequestration. J Cell Sci 15 September 2004; 117 (20): 4665–4672. doi: https://doi.org/10.1242/jcs.01335
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Special Issue – Cell Biology of Mitochondria

Our special issue on ‘Cell Biology of Mitochondria’ is now complete. Explore this issue and read the Editorial from our Guest Editors Ana J. García-Sáez and Heidi McBride.
Save the date – Imaging Cell Dynamics

We are delighted to announce that we will be hosting a 2026 Imaging Cell Dynamics meeting. This meeting will provide a unique opportunity to bring together experts working at the interface between cell biology and imaging. Save the date for 11-14 May 2026 and register for more information.
Mitochondria–membranous organelle contacts at a glance

Antigoni Diokmetzidou and Luca Scorrano provide an overview of contacts between mitochondria and other membranous organelles, describing the interorganelle tethers involved and the factors that regulate the composition and functions of such contacts.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 6 June 2025 (decision by week commencing 28 July 2025) and 5 September 2025 (decision by week commencing 20 October 2025).
JCS fast-track option
Have a paper that has been reviewed elsewhere? JCS is pleased to consider such manuscripts for fast-tracked decision making. Send us your manuscript together with the full set of reviews and decision letters, and we will make an initial decision within one week.