This study investigated the effects of cyclic stretching on adipocyte differentiation of mouse preadipocyte 3T3-L1 cells. Confluent 3T3-L1 cells were treated with dexamethasone, 3-isobutyl-1-methylxanthine and insulin for 45 hours (induction period), followed by incubation with insulin for 9 additional days (maturation period). A transient burst of CCAAT/enhancer-binding protein (C/EBP) β and C/EBPδ at an early stage (∼3 hours) and a delayed induction (∼45 hours) of C/EBPα and PPARγ2 were sequentially provoked during the induction period. Application of cyclic stretching during the entire induction period or only during the final 15 hours of the induction period significantly retarded the induction of glycerol-3-phosphate dehydrogenase (GPDH) activity and the accumulation of intracellular triglycerides by the end of the maturation period. Cyclic stretching for the entire induction period, as well as that applied during the final 15 hours of the induction period, significantly reduced the expression of PPARγ2 mRNA, whereas reduction in the expression of C/EBPδ mRNA was only observed in response to stretching that had been applied during the entire induction period. The expression of C/EBPα and C/EBPβ mRNA did not change in response to stretching. Stretching induced the phosphorylation of extracellular-signal-regulated protein kinases 1 and 2 (ERK1/2), which are members of the mitogen-activated-protein kinase (MAPK) family, during the induction period. PD98,059, a MAPK/ERK kinase inhibitor, reversed the stretch-induced reduction of PPARγ2 at both mRNA and protein levels achieved during the induction period. PD98,059 also restored GPDH activity and lipid droplet accumulation. Furthermore, the differentiation inhibited by the stretching was also restored by synthetic PPARγ ligand. Collectively, these results suggest that the inhibition of adipocyte differentiation in response to stretching is mainly attributable to the reduced expression of PPARγ2, which is mediated by activation of the ERK/MAPK system.
Inhibition of adipocyte differentiation by mechanical stretching through ERK-mediated downregulation of PPARγ2 Available to Purchase
Yoshiyuki Tanabe, Masaru Koga, Maki Saito, Yumi Matsunaga, Koichi Nakayama; Inhibition of adipocyte differentiation by mechanical stretching through ERK-mediated downregulation of PPARγ2. J Cell Sci 15 July 2004; 117 (16): 3605–3614. doi: https://doi.org/10.1242/jcs.01207
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Special Issue – Cell Biology of Mitochondria

Our special issue on ‘Cell Biology of Mitochondria’ is now complete. Explore this issue and read the Editorial from our Guest Editors Ana J. García-Sáez and Heidi McBride.
Save the date – Imaging Cell Dynamics

We are delighted to announce that we will be hosting a 2026 Imaging Cell Dynamics meeting. This meeting will provide a unique opportunity to bring together experts working at the interface between cell biology and imaging. Save the date for 11-14 May 2026 and register for more information.
Mitochondria–membranous organelle contacts at a glance

Antigoni Diokmetzidou and Luca Scorrano provide an overview of contacts between mitochondria and other membranous organelles, describing the interorganelle tethers involved and the factors that regulate the composition and functions of such contacts.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 6 June 2025 (decision by week commencing 28 July 2025) and 5 September 2025 (decision by week commencing 20 October 2025).
JCS fast-track option

Have a paper that has been reviewed elsewhere? JCS is pleased to consider such manuscripts for fast-tracked decision making. Send us your manuscript together with the full set of reviews and decision letters, and we will make an initial decision within one week.
Help shape your future publishing experience

We are gathering feedback from our readers, authors and reviewers, to help us shape the next 100 years and to keep offering a publishing experience that truly supports our community. Please have your say by completing our community survey. Survey closes on 25 June.