Despite intensive in vitro studies, little is known about the regulation of caldesmon (CaD) by Ca2+-calmodulin (Ca2+-CaM) in vivo. To investigate this regulation, a mutant was generated of the C-terminal fragment of human fibroblast CaD, termed CaD39-AB, in which two crucial tryptophan residues involved in Ca2+-CaM binding were each replaced with alanine. The mutation abolished most CaD39-AB binding to Ca2+-CaM in vitro but had little effect on in vitro binding to actin filaments and the ability to inhibit actin/tropomyosin-activated heavy meromyosin ATPase. To study the functional consequences of these mutations in vivo, we transfected an expression plasmid carrying CaD39-AB cDNA into Chinese hamster ovary (CHO) cells and isolated several clones expressing various amounts of CaD39-AB. Immunofluorescence microscopy revealed that mutant CaD39-AB was distributed diffusely throughout the cytoplasm but also concentrated at membrane ruffle regions. Stable expression of CaD39-AB in CHO cells disrupted assembly of stress fibers and focal adhesions, altered cell morphology, and slowed cell cycle progression. Moreover, CaD39-AB-expressing cells exhibited motility defects in a wound-healing assay, in both velocity and the persistence of translocation, suggesting a role for CaD regulation by Ca2+-CaM in cell migration. Together, these results demonstrate that CaD plays a crucial role in mediating the effects of Ca2+-CaM on the dynamics of the actin cytoskeleton during cell migration.
Caldesmon mutant defective in Ca2+-calmodulin binding interferes with assembly of stress fibers and affects cell morphology, growth and motility
Yan Li, Jenny L. C. Lin, Rebecca S. Reiter, Karla Daniels, David R. Soll, Jim J. C. Lin; Caldesmon mutant defective in Ca2+-calmodulin binding interferes with assembly of stress fibers and affects cell morphology, growth and motility. J Cell Sci 15 July 2004; 117 (16): 3593–3604. doi: https://doi.org/10.1242/jcs.01216
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Call for papers - Cilia and Flagella: from Basic Biology to Disease

We are welcoming submissions for our upcoming special issue: Cilia and Flagella: from Basic Biology to Disease. This issue will be coordinated by two Guest Editors: Pleasantine Mill (University of Edinburgh) and Lotte Pedersen (University of Copenhagen). Extended submission deadline: 31 March 2025.
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about Journal of Cell Science’s journey and explore the history of each of our sister journals: Development, Journal of Experimental Biology, Disease Models & Mechanisms and Biology Open.
Introducing our new Associate Editors

In this Editorial, JCS Editor-in-Chief Michael Way welcomes five new Associate Editors to the JCS team. These Associate Editors will expand our support for the wider cell biology community and handle articles in immune cell biology, proteostasis, imaging and image analysis, plant cell biology, and stem cell biology and modelling.
Diversity of microtubule arrays in animal cells at a glance

In this Cell Science at a Glance article, Emma van Grinsven and Anna Akhmanova provide an overview of the diverse microtubule arrays present in differentiated animal cells and discuss how these arrays form and function.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 7 March 2025 (decision by week commencing 21 April 2025) and 6 June 2025 (decision by week commencing 28 July 2025).