Heparan sulfate O-sulfotransferases catalyze the O-sulfation of the glucosamine and uronic acid residues of heparan sulfate, thereby determining the binding sites for ligands necessary for important biological functions such as the formation of morphogen gradients and growth factor signaling. Here we investigated the localization of the three heparan sulfate 6-O-sulfotransferase (HS6ST) isoforms and the mechanism of their localization. All three GFP-tagged HS6STs localized in the Golgi apparatus. C-5 epimerase and HS2ST have been shown to form complexes that facilitate their localization in the Golgi but we found that the absence of HS2ST did not alter the localization of any of the HS6STs. Neither the forced expression of HS2ST in the rough endoplasmic reticulum (ER), the deletion of most of the lumenal domain nor increasing the length of the transmembrane domain had any effect on the localization of HS6STs. However, deletions in the stem region did affect the Golgi localization of the HS6STs and also reduced their sulfotransferase activity and oligomer formation. These findings suggest that the stem region of HS6ST plays an important role in normal functioning, including the transit of HS6ST to the Golgi apparatus and maintaining the active conformation essential for enzyme activity.
Stem domains of heparan sulfate 6-O-sulfotransferase are required for Golgi localization, oligomer formation and enzyme activity
Naoko Nagai, Hiroko Habuchi, Jeffrey D. Esko, Koji Kimata; Stem domains of heparan sulfate 6-O-sulfotransferase are required for Golgi localization, oligomer formation and enzyme activity. J Cell Sci 1 July 2004; 117 (15): 3331–3341. doi: https://doi.org/10.1242/jcs.01191
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Interviews with Biologists @ 100 conference speakers

Explore our interviews with keynote speakers from the Biologists @ 100 conference, hosted to celebrate our publisher’s 100th anniversary, where we discuss climate change and biodiversity with Hans-Otto Pörtner and Jane Francis, health and disease with Charles Swanton and emerging technologies with Manu Prakash and Jennifer Lippincott-Schwartz.
Introducing our new Associate Editors

In this Editorial, JCS Editor-in-Chief Michael Way welcomes five new Associate Editors to the JCS team. These Associate Editors will expand our support for the wider cell biology community and handle articles in immune cell biology, proteostasis, imaging and image analysis, plant cell biology, and stem cell biology and modelling.
The spatial choreography of mRNA biosynthesis

In their Review, André Ventura-Gomes and Maria Carmo-Fonseca detail the latest research progress and technological advancements that are helping to unlock how nuclear organisation underpins control of gene transcription and pre-mRNA splicing.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 6 June 2025 (decision by week commencing 28 July 2025) and 5 September 2025 (decision by week commencing 20 October 2025).
The emerging roles of the endoplasmic reticulum in mechanosensing and mechanotransduction

In their Review, Jonathan Townson and Cinzia Progida highlight recently emerging evidence for a role of the endoplasmic reticulum in enabling a cell to sense and respond to changes in the extracellular mechanical environment.