Hepatoblasts give rise to both mature hepatocytes and cholangiocytes. While Notch signaling has been implicated in the formation of bile ducts composed of cholangiocytes, little is known about the mechanism of lineage commitment of hepatoblasts. Here we describe the role of the Notch pathway in hepatoblast differentiation. Immunohistochemical analysis showed that Jagged1 was expressed in the cells surrounding the portal veins and Notch2 was expressed in most hepatic cells at mid gestation when ductal plates are formed surrounding the portal veins. Interestingly, the Jagged1+ cells were adjacent to ductal plates, suggesting that the Notch signaling is activated in hepatoblasts that undergo differentiation into cholangiocytes. In fact, expression of the Notch intracellular domain in Dlk+ hepatoblasts inhibited hepatic differentiation and significantly reduced the expression of albumin, a marker of both hepatoblasts and hepatocytes. Furthermore, the addition of Matrigel to the hepatoblast culture upregulated the expression of cytokeratin 7 and 19, integrin β4, and HNF1β, which are known to be expressed in cholangiocytes. By contrast, downregulation of the Notch signaling by siRNA specific for Notch2 mRNA as well as by the γ-secretase inhibitor L-685,458 promoted the hepatic differentiation. Consistent with the previous finding that mature cholangiocytes strongly express HNF1β, but barely express HNF1α, HNF4, and C/EBPα, activation of the Notch signaling upregulated HNF1β expression, whereas it downregulated the expression of HNF1α, HNF4, and C/EBPα. These results suggest that the Notch signaling contributes to form a network of these transcription factors suitable for cholangiocyte differentiation.
Notch signaling controls hepatoblast differentiation by altering the expression of liver-enriched transcription factors Available to Purchase
Naoki Tanimizu, Atsushi Miyajima; Notch signaling controls hepatoblast differentiation by altering the expression of liver-enriched transcription factors. J Cell Sci 1 July 2004; 117 (15): 3165–3174. doi: https://doi.org/10.1242/jcs.01169
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Interviews with Biologists @ 100 conference speakers

Explore our interviews with keynote speakers from the Biologists @ 100 conference, hosted to celebrate our publisher’s 100th anniversary, where we discuss climate change and biodiversity with Hans-Otto Pörtner and Jane Francis, health and disease with Charles Swanton and Sadaf Farooqi, and emerging technologies with Manu Prakash and Jennifer Lippincott-Schwartz.
Introducing our new Associate Editors

In this Editorial, JCS Editor-in-Chief Michael Way welcomes five new Associate Editors to the JCS team. These Associate Editors will expand our support for the wider cell biology community and handle articles in immune cell biology, proteostasis, imaging and image analysis, plant cell biology, and stem cell biology and modelling.
The spatial choreography of mRNA biosynthesis

In their Review, André Ventura-Gomes and Maria Carmo-Fonseca detail the latest research progress and technological advancements that are helping to unlock how nuclear organisation underpins control of gene transcription and pre-mRNA splicing.
JCS-FocalPlane Training Grants

Early-career researchers - working in an area covered by JCS - who would like to attend a microscopy training course, please apply. Deadline dates for 2025 applications: 6 June 2025 (decision by week commencing 28 July 2025) and 5 September 2025 (decision by week commencing 20 October 2025).
The emerging roles of the endoplasmic reticulum in mechanosensing and mechanotransduction

In their Review, Jonathan Townson and Cinzia Progida highlight recently emerging evidence for a role of the endoplasmic reticulum in enabling a cell to sense and respond to changes in the extracellular mechanical environment.