Resistance to chemotherapeutic drugs is a major obstacle in the treatment of leukemia and multiple myeloma. We have previously found that myeloma and leukemic cells in transition from low-density log phase conditions to high-density plateau phase conditions export substantial amounts of endogenous topoisomerase II alpha from the nucleus to the cytoplasm. In order for topoisomerase-targeted chemotherapy to function, the topoisomerase target must have access to the nuclear DNA. Therefore, the nuclear export of topoisomerase II alpha may contribute to drug resistance, and defining this mechanism may lead to methods to preclude this avenue of resistance. We have identified nuclear export signals for topoisomerase II alpha at amino acids 1017-1028 and 1054-1066, using FITC-labeled BSA-export signal peptide conjugates microinjected into the nuclei of HeLa cells. Functional confirmation of both signals (1017-1028 and 1054-1066) was provided by transfection of human myeloma cells with plasmids containing the gene for a full-length human FLAG-topoisomerase fusion protein, mutated at hydrophobic amino acid residues in the export signals. Of the six putative export signals tested, the two sites above were found to induce export into the cytoplasm. Export by both signals was blocked by treatment of the cells with leptomycin B, indicating that a CRM-1-dependent pathway mediates export. Site-directed mutagenesis of two central hydrophobic residues in either export signal in full-length human topoisomerase blocked export of recombinant FLAG-topoisomerase II alpha, indicating that both signals may be required for export. Interestingly, this pair of nuclear export signals (1017-1028 and 1054-1066) also defines a dimerization domain of the topoisomerase II alpha molecule.
Human topoisomerase IIα nuclear export is mediated by two CRM-1-dependent nuclear export signals Available to Purchase
These authors contributed equally to this work
Joel G. Turner, Roxanne Engel, Jennifer A. Derderian, Richard Jove, Daniel M. Sullivan; Human topoisomerase IIα nuclear export is mediated by two CRM-1-dependent nuclear export signals. J Cell Sci 15 June 2004; 117 (14): 3061–3071. doi: https://doi.org/10.1242/jcs.01147
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
JCS fast-track option

Have a paper that has been reviewed elsewhere? JCS is pleased to consider such manuscripts for fast-tracked decision making. Send us your manuscript together with the full set of reviews and decision letters, and we will make an initial decision within one week.
Special Issue – Cell Biology of Mitochondria

Our special issue on ‘Cell Biology of Mitochondria’ is now complete. Explore this issue and read the Editorial from our Guest Editors Ana J. García-Sáez and Heidi McBride.
Save the date – Imaging Cell Dynamics

We are delighted to announce that we will be hosting a 2026 Imaging Cell Dynamics meeting. This meeting will provide a unique opportunity to bring together experts working at the interface between cell biology and imaging. Save the date for 11-14 May 2026 and register for more information.
Origin and evolution of mitochondrial inner membrane composition

In this Review, Kailash Venkatraman and colleagues provide an examination of the morphological similarities between prokaryotic intracytoplasmic membranes and mitochondrial inner membranes, and whether cristae evolution has driven specialisation of the mitochondrial lipidome.
Resolution in super-resolution microscopy
Super-resolution microscopy (SRM) has emerged as a powerful tool for biological discovery. In this Perspective, Kirti Prakash and colleagues compile expert opinions on crucial, yet often overlooked, aspects of SRM that are essential for maximising its benefits and advancing the field.