SKD1 belongs to the AAA-ATPase family and is one of the mammalian class E Vps (vacuolar protein sorting) proteins. Previously we have reported that the overexpression of an ATPase activity-deficient form of SKD1 (suppressor of potassium transport growth defect), SKD1(E235Q), leads the perturbation of membrane transport through endosomes and lysosomes, however, the molecular mechanism behind the action of SKD1 is poorly understood. We have identified two SKD1-binding proteins, SBP1 and mVps2, by yeast two-hybrid screening and we assign them as mammalian class E Vps proteins. The primary sequence of SBP1 indicates 22.5% identity with that of Vta1p from Saccharomyces cerevisiae, which was recently identified as a novel class E Vps protein binding to Vps4p. In fact, SBP1 binds directly to SKD1 through its C-terminal region (198-309). Endogenous SBP1 is exclusively localized to cytosol, however it is redirected to an aberrant endosomal structure, the E235Q compartment, in the cells expressing SKD1(E235Q). The ATPase activity of SKD1 regulates both the membrane association of, and assembly of, a large hetero-oligomer protein complex, containing SBP1, which is potentially involved in membrane transport through endosomes and lysosomes. The N-terminal half (1-157) of human SBP1 is identical to lyst-interacting protein 5 and intriguingly, SKD1 ATPase activity significantly influences the membrane association of lyst protein. The SKD1-SBP1 complex, together with lyst protein, may function in endosomal membrane transport. A primary sequence of mVps2, a mouse homologue of human CHMP2A/BC-2, indicates 44.4% identity with Vps2p/Did4p/Chm2p from Saccharomyces cerevisiae. mVps2 also interacts with SKD1 and is localized to the E235Q compartment. Intriguingly, the N-terminal coiled-coil region of mVps2 is required for the formation of the E235Q compartment but not for binding to SKD1. We propose that both SBP1 and mVps2 regulate SKD1 function in mammalian cells.
Mammalian class E Vps proteins, SBP1 and mVps2/CHMP2A, interact with and regulate the function of an AAA-ATPase SKD1/Vps4B Available to Purchase
Hideaki Fujita, Yusuke Umezuki, Kanako Imamura, Daisuke Ishikawa, Seiko Uchimura, Atsuki Nara, Tamotsu Yoshimori, Yoshihide Hayashizaki, Jun Kawai, Kazumi Ishidoh, Yoshitaka Tanaka, Masaru Himeno; Mammalian class E Vps proteins, SBP1 and mVps2/CHMP2A, interact with and regulate the function of an AAA-ATPase SKD1/Vps4B. J Cell Sci 15 June 2004; 117 (14): 2997–3009. doi: https://doi.org/10.1242/jcs.01170
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
JCS fast-track option

Have a paper that has been reviewed elsewhere? JCS is pleased to consider such manuscripts for fast-tracked decision making. Send us your manuscript together with the full set of reviews and decision letters, and we will make an initial decision within one week.
Special Issue – Cell Biology of Mitochondria

Our special issue on ‘Cell Biology of Mitochondria’ is now complete. Explore this issue and read the Editorial from our Guest Editors Ana J. García-Sáez and Heidi McBride.
Save the date – Imaging Cell Dynamics

We are delighted to announce that we will be hosting a 2026 Imaging Cell Dynamics meeting. This meeting will provide a unique opportunity to bring together experts working at the interface between cell biology and imaging. Save the date for 11-14 May 2026 and register for more information.
Origin and evolution of mitochondrial inner membrane composition

In this Review, Kailash Venkatraman and colleagues provide an examination of the morphological similarities between prokaryotic intracytoplasmic membranes and mitochondrial inner membranes, and whether cristae evolution has driven specialisation of the mitochondrial lipidome.
Resolution in super-resolution microscopy
Super-resolution microscopy (SRM) has emerged as a powerful tool for biological discovery. In this Perspective, Kirti Prakash and colleagues compile expert opinions on crucial, yet often overlooked, aspects of SRM that are essential for maximising its benefits and advancing the field.